Muutke küpsiste eelistusi

E-raamat: Advances on Theoretical and Methodological Aspects of Probability and Statistics

Edited by (McMaster University, Hamilton, Ontario, Canada)
  • Formaat: 560 pages
  • Ilmumisaeg: 30-Apr-2019
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781135465100
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 59,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 560 pages
  • Ilmumisaeg: 30-Apr-2019
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781135465100
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

At the International Indian Statistical Association Conference, held at McMaster University in Ontario, Canada, participants focused on advancements in theory and methodology of probability and statistics. This is one of two volumes containing invited papers from the meeting. The 32 chapters deal with different topics of interest, including stochastic processes and inference, distributions and characterizations, inference, Bayesian inference, selection methods, regression methods, and methods in health research. The text is ideal for applied mathematicians, statisticians, and researchers in the field.
Preface xix
List of Contributors
xxi
List of Tables
xxvii
List of Figures
xxix
Part I Stochastic Processes and Inference
Nonlinear Filtering with Stochastic Delay Equations
3(34)
G. Kallianpur
Pranab Kumar Mandal
Introduction
3(2)
Preliminaries
5(2)
Stochastic Delay Differential Equations
7(13)
The Filtering Problem
20(11)
Zakai Equation and Uniqueness
31(6)
References
35(2)
Sigma Oscillatory Processes
37(12)
Randall J. Swift
Some Classes of Nonstationary Processes
37(4)
Sigma Oscillatory Processes
41(3)
Determination of the Evolutionary Spectra
44(5)
References
46(3)
Some Properties of Harmonizable Processes
49(8)
Marc H. Mehlman
Introduction
49(2)
Incremental Processes
51(1)
Moments of Harmonizable Processes
52(2)
Virile Representations
54(3)
References
56(1)
Inference for Branching Processes
57(18)
V. Basawa
Introduction
57(1)
Galton-Watson Branching Process: Background
58(1)
Locally Asymptotic Mixed Normal (Lamn) Family
59(1)
G-W Branching Process as a Proto-Type Example of a Lamn Model
60(1)
Estimation Efficiency
61(1)
Test Efficiency
62(2)
Confidence Bounds
64(1)
Conditional Inference
65(1)
Prediction and Test of Fit
66(1)
Quasilikelihood Estimation
67(1)
Bayes and Empirical Bayes Estimation
68(2)
Concluding Remarks
70(5)
References
70(5)
Part II Distributions and Characterizations
The Conditional Distribution of X Given X = Y Can Be Almost Anything!
75(8)
B. C. Arnold
C. A. Robertson
Introduction
75(1)
The Distribution of X Given X = Y Can be Almost Anything
76(2)
Dependent Variables
78(1)
Related Examples
79(4)
References
81(2)
An Application of Record Range and Some Characterization Results
83(14)
P. Basak
Introduction
83(2)
The Stopping Time N
85(6)
The Mean and the Variance of N
85(4)
Behavior for Large c: Almost Sure Limits
89(2)
Characterization Results
91(6)
References
95(2)
Contents of Random Simplices and Random Parallelotopes
97(20)
A. M. Mathai
Introduction
97(10)
Some Basic Results from Linear Algebra
98(4)
Some Basic Results on Jacobians of Matrix Transformations
102(2)
Some Practical Situations
104(3)
Distribution of the Volume or Content of a Random Parallelotope in Rn
107(4)
Matrix-Variate Type-1 Beta Distribution
109(1)
Matrix-Variate Type-2 Beta Density
110(1)
Spherically Symmetric Distributions
111(2)
Arrival of Points by a Poisson Process
113(4)
References
114(3)
The Distribution of Functions of Elliptically Contoured Vectors in Terms of Their Gaussian Counterparts
117(14)
Young-Ho Cheong
Serge B. Provost
Introduction and Notation
117(2)
A Representation of the Density Function of Elliptical Vectors
119(1)
The Exact Distribution of Quadratic Forms
120(3)
Moments and Approximate Distribution
123(2)
A Numerical Example
125(6)
References
126(5)
Inverse Normalizing Transformations and an Extended Normalizing Transformation
131(16)
Haim Shore
Introduction
132(1)
Derivation of the Transformations
133(3)
Numerical Assessment
136(1)
Estimation
137(2)
Conclusions
139(8)
References
140(7)
Curvature: Gaussian or Riemann
147(16)
William Chen
Definition of the Gaussian Curvature
147(3)
Examples
150(3)
Some Basic Properties of Gaussian Curvature
153(4)
Applications of the Gauss Equations
157(6)
References
158(5)
Part III Inference
Convex Geometry, Asymptotic Minimaxity and Estimating Functions
163(10)
Schultz Chan
Malay Ghosh
Introduction
163(1)
A Convexity Result
164(2)
Asymptotic Minimaxity
166(7)
Appendix
170(1)
References
171(2)
Nonnormal Filtering Via Estimating Functions
173(12)
A. Thavaneswaran
M. E. Thompson
Introduction
173(2)
Linear and Nonlinear Filters
175(4)
Optimal Combination Extension
177(2)
Applications to State Space Models
179(6)
Linear State Space Models
179(1)
Generalized Nonnormal Filtering
180(1)
Robust Estimation Filtering Equations
180(1)
Censored Autocorrelated Data
181(1)
References
182(3)
Recent Developments in Conditional-Frequentist Sequential Testing
185(14)
B. Boukai
Introduction
185(2)
The Setup
187(1)
The `Conventional' Approaches
188(3)
The New Conditional Sequential Test
191(2)
An Application
193(6)
References
196(3)
Some Remarks on Generalizations of the Likelihood Function and the Likelihood Principle
199(14)
Tapan K. Nayak
Subrata Kundu
Introduction
199(3)
A General Framework
202(2)
Sufficiency and Weak Conditionality
204(3)
The Sufficiency Principle
204(2)
Weak Conditionality
206(1)
The Likelihood Principle
207(3)
Discussion
210(3)
References
211(2)
Cusum Procedures for Detecting Changes in the Tail Probability of A Normal Distribution
213(12)
Rasul A. Khan
Introduction
213(1)
A Shewhart Chart and a Cusum Scheme
214(2)
Noncentral t-Statistics Based Cusum Procedures
216(5)
Simulations
221(4)
References
223(2)
Detecting Changes in the Von Mises Distribution
225(14)
Kaushik Ghosh
Introduction
225(2)
The Tests
227(3)
Change in κ,μ Fixed and Known
227(1)
Change in κ,μ Fixed but Unknown
228(1)
Change in μ or κ or Both
229(1)
Simulation Results
230(1)
Power Comparisons
231(1)
An Example
232(7)
References
233(6)
One-Way Random Effects Model with A Covariate: Nonnegative Estimators
239(8)
Poduri S. R. S. Rao
Introduction
239(1)
Ancova Estimator and its Modification
240(2)
Ancova Estimator
240(1)
Adjustment for Nonnegativeness
241(1)
The Minqe and a Modification
242(1)
An Estimator Derived from the Mivque Procedure
242(1)
Special Cases of the Estimator
243(1)
Comparison of the Estimators
243(4)
References
245(2)
On a Two-Stage Procedure with Higher Than Second-Order Approximations
247(32)
N. Mukhopadhyay
Introduction
247(2)
General Formulation and Main Results
249(6)
Proofs of the Main Results
255(10)
Proof of Theorem 18.2.1
256(1)
Auxiliary Lemmas
257(7)
Proof of Theorem 18.2.2
264(1)
Proof of Theorem 18.2.3
264(1)
Applications of the Main Results
265(9)
Negative Exponential Location Estimation
266(2)
Multivariate Normal Mean Vector Estimation
268(2)
Linear Regression Parameters Estimation
270(1)
Multiple Decision Theory
271(3)
Concluding Thoughts
274(5)
References
275(4)
Bounded Risk Point Estimation of a Linear Function of K Multinormal Mean Vectors when Covariance Matrices are Unknown
279(10)
M. Aoshima
Y. Takada
Introduction
279(2)
Two-Stage Procedure
281(1)
Asymptotic Properties
282(7)
References
286(3)
The Elusive and Illusory Multivariate Normality
289(16)
G. S. Mudholkar
D. K. Srivastava
Introduction
290(1)
Tests of Multivariate Normality
291(3)
Dubious Normality of Some Well Known Data
294(4)
Conclusions
298(7)
References
298(7)
Part IV Bayesian Inference
Characterizations of Tailfree and Neutral to the Right Priors
305(12)
R. V. Ramamoorthi
L. Draghici
J. Dey
Introduction
305(1)
Tailfree Priors
306(4)
Neutral to Right Priors
310(3)
Nr Priors From Censored Observations
313(4)
References
315(2)
Empirical Bayes Estimation and Testing For a Location Parameter Family of Gamma Distributions
317(14)
N. Balakrishnan
Yimin Ma
Introduction
317(1)
Bayes Estimator and Bayes Testing Rule
318(2)
Bayes Estimation
318(1)
Bayes Testing
319(1)
Empirical Bayes Estimator and Empirical Bayes Testing
320(1)
Empirical Bayes Estimator
320(1)
Empirical Bayes Testing Rule
321(1)
Asymptotic Optimality of the Empirical Bayes Estimator
321(4)
Asymptotic Optimality of the Empirical Bayes Testing Rule
325(6)
References
328(3)
Rate of Convergence for Empirical Bayes Estimation of a Distribution Function
331(14)
T. C. Liang
Introduction
331(2)
The Empirical Bayes Estimators
333(2)
Asymptotic Optimality
335(10)
References
341(4)
Part V Selection Methods
On a Selection Procedure for Selecting the Best Logistic Population Compared with a Control
345(26)
S. S. Gupta
Z. Lin
X. Lin
Introduction
346(1)
Formulation of the Selection Problem with the Selection Rule
347(5)
Asymptotic Optimality of the Proposed Selection Procedure
352(10)
Simulations
362(9)
References
363(8)
On Selection From Normal Populations in Terms of the Absolute Values of their Means
371(20)
Khaled Hussein
S. Panchapakesan
Introduction
371(2)
Some Preliminary Results
373(1)
Indifference Zone Formulation: Known Common Variance
373(2)
Subset Selection Formulation: Known Common Variance
375(1)
Indifference Zone Formulation: Unknown Common Variance
376(2)
Subset Selection Formulation: Unknown Common Variance
378(1)
An Integrated Formulation
379(1)
Simultaneous Selection of the Extreme Populations: Indifference Zone Formulation and Known Common Variance
380(4)
Simultaneous Selection of the Extreme Populations: Subset Selection Formulation Known Common Variance
384(2)
Concluding Remarks
386(5)
References
387(4)
A Selection Procedure Prior to Signal Detection
391(16)
Pinyin Chen
Introduction
391(1)
The Selection Procedure
392(4)
Table, Simulation Study and An Example
396(11)
References
398(9)
Part VI Regression Methods
Tolerance Intervals and Calibration in Linear Regression
407(20)
YI-TZU Lee
Thomas Mathew
Introduction
407(3)
Tolerance Intervals, Simultaneous Tolerance Intervals and a Marginal Property
410(4)
Numerical Results
414(7)
The Simulation of (27.2.17) and (27.2.18)
416(4)
An Example
420(1)
Calibration
421(1)
Conclusions
422(5)
Appendix A: Some Fitted Functions k(c)
423(2)
References
425(2)
An Overview of Sequential and Multistage Methods in Regression Models
427(24)
Sugary Datta
Introduction
427(1)
The Models and the Methodologies---A General Discussion
428(5)
Linear Regression and Related Models
429(1)
Sequential and Multistage Methodologies
430(2)
Sequential Inference in Regression: A Motivating Example
432(1)
Fixed-Precision Inference in Deterministic Regression Models
433(5)
Confidence Set Estimation
434(2)
Point Estimation
436(2)
Hypotheses Testing
438(1)
Sequential Shrinkage Estimation In Regression
438(1)
Bayes Sequential Inference in Regression
439(1)
Sequential Inference in Stochastic Regression Models
440(1)
Sequential Inference in Inverse Linear Regression and Errors-in-Variables Models
441(1)
Some Miscellaneous Topics
442(9)
References
443(8)
Bayesian Inference for a Change-Point in Nonlinear Modeling
451(22)
V. K. Jandhyala
J. A. Alsaleh
Introduction
451(2)
Gibbs Sampler
453(3)
Bayesian Preliminaries and the Nonlinear Change-Point Model
456(1)
Bayesian Inferential Methods
457(3)
Implementation and the Results
460(13)
Appendix
463(2)
References
465(8)
Convergence to Tweedie Models and Related Topics
473(20)
Bent Jørgensen
Vladimir Vinogradov
Introduction
474(4)
Special Cases: Inverse Gaussian and Generalized Inverse Gaussian Distributions
478(2)
Critical Points in the Formation of Large Deviations
480(3)
Different Mechanisms of Ruin in Non-Life Insurance
483(10)
References
486(7)
Part VII Methods in Health Research
Estimation of Stage Occupation Probabilities in Multistage Models
493(14)
Somnath Datta
Glen A. Satten
Susmita Datta
Introduction
494(1)
The Fractional Risk Set Estimators
495(5)
Variance Estimation
500(2)
Extension to Multistage Models
502(5)
References
503(4)
Statistical Methods in the Validation Process of a Health Related Quality of Life Questionnaire: Classical and Modern Theory
507(1)
Mounir Mesbah
Agnes Hamon
Introduction
507(2)
Classical Psychometric Theory
509(1)
The Strict Parallel Model
509(1)
Reliability of an Instrument
510(4)
Modern Psychometric Theory
514(1)
The Rasch Model
515(8)
Conclusion
523(1)
References
523(4)
Annex 1: Communication Dimension of The Sip (9 Items)
527(1)
Annex 2: Social Interaction Dimension of the Sip (20 Items)
528


N. Balaskrishnan, McMaster University, Hamilton, Ontario, Canada