Muutke küpsiste eelistusi

E-raamat: Advances in Visual Computing: 18th International Symposium, ISVC 2023, Lake Tahoe, NV, USA, October 16-18, 2023, Proceedings, Part I

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 98,18 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This volume LNCS 14361 and 14362 constitutes the refereed proceedings of the, 16th International Symposium, ISVC 2023, in October 2023, held at Lake Tahoe, NV, USA.

The 42 full papers and 13 poster papers were carefully reviewed and selected from 120 submissions. A total of 25 papers were also accepted for oral  presentation in special tracks from 34 submissions. The following topical sections followed as:

Part 1: ST: Biomedical Image Analysis Techniques for Cancer Detection, Diagnosis and Management; Visualization; Video Analysis and Event Recognition; ST: Innovations in Computer Vision & Machine Learning for Critical & Civil Infrastructures; ST: Generalization in Visual Machine Learning; Computer Graphics; Medical Image Analysis; Biometrics; Autonomous Anomaly Detection in Images; ST: Artificial Intelligence in Aerial and Orbital Imagery; ST: Data Gathering, Curation, and Generation for Computer Vision and Robotics in Precision Agriculture.

Part 2: Virtual Reality; Segmentation; Applications; Object Detection and Recognition; Deep Learning; Poster.



ST: Biomedical Image Analysis Techniques for Cancer Detection, Diagnosis
and Management.- Hybrid Region and Pixel-Level Adaptive Loss for Mass
Segmentation on Whole Mammography Images.- Deep Learning Based GABA
Edited-MRS Signal Reconstruction.- Investigating the Impact of Attention on
Mammogram Classification.- ReFit:A Framework for Refinement of Weakly
Supervised Semantic Segmentation using Object Border Fitting for Medical
Images.- A Data-centric Approach for Pectoral Muscle Deep
Learning Segmentation Enhancements in Mammography
Images.- Visualization.- Visualizing Multimodal Time Series at Scale.- Hybrid
Tree Visualizations for Analysis of Gerrymandering.- ArcheryVis: A Tool for
Analyzing and Visualizing Archery Performance Data.- Spiro: Order-preserving
Visualization in High Performance Computing Monitoring.- From Faces To
Volumes - Measuring Volumetric Asymmetry in 3D Facial Palsy Scans.- Video
Analysis and Event Recognition.- Comparison of Autoencoder Models for
Unsupervised Representation Learning of Skeleton Sequences.- Local and
Global Context Reasoning for Spatio-Temporal Action Localization.- Zero-Shot
Video Moment Retrieval using BLIP-based Models.- Self-Supervised
Representation Learning for Fine Grained Human Hand Action Recognition in
Industrial Assembly Lines.- ST: Innovations in Computer Vision & Machine
Learning for Critical & Civil Infrastructures.- Pretext Tasks in Bridge
Defect Segmentation within a ViT-Adapter Framework.- A Few-Shot Attention
Recurrent Residual U-Net for Crack Segmentation.- Efficient Resource
Provisioning in Critical Infrastructures based on Multi-Agent Rollout enabled
by Deep Q-Learning.- Video-Based Recognition of Aquatic Invasive Species
Larvae Using Attention-LSTM Transformer.- ST: Generalization inVisual Machine
Learning.- Latent Space Navigation for Face Privacy: A Case Study on the
MNIST Dataset.- Domain Generalization for Foreground Segmentation Using
Federated Learning.- Probabilistic Local Equivalence Certification for
Robustness Evaluation.- Challenges of Depth Estimation for Transparent
Objects.- Volumetric Body Composition through Cross-Domain Consistency
Training for Unsupervised Domain Adaptation.- Computer Graphics.- Water
Animation Using Coupled SPH and Wave Equation.- Neural Rendering into
Unity.- Virtual Home Staging: Inverse Rendering and Editing an
Indoor Panorama under Natural Illumination.- SwarmCurves: Evolutionary Curve
Reconstruction.- Medical Image Analysis.- Brain Cortical Surface Registration
with Anatomical Atlas Constraints.- When System Model meets Image Prior: An
Unsupervised Deep Learning Architecture for Accelerated Magnetic Resonance
Imaging.- 3D Reconstruction from 2D Cerebral Angiograms as a Volumetric
Denoising Problem.- An Integrated Shape-Texture Descriptor for
Modeling Whole-Organism Phenotypes in Drug Screening.- Enhancing Image
Reconstruction via Phase-Constrained Data in an Iterative
Process.- Biometrics.- I Got Your Emotion: Emotion Preserving Face
De-identification Using Injection-based Generative Adversarial
Networks.- DoppelVer: A Benchmark for Face Verification.- Two-stage Face
Detection and Anti-spoofing.- Autonomous Anomaly Detection in Images.- Driver
Anomaly Detection Using Skeleton Images.- Driver Anomaly Detection Using
Skeleton Images.- Latent Diffusion based Multi-class Anomaly Detection.- ST:
Artificial Intelligence in Aerial and Orbital Imagery.- Investigating the
impact of a low-rank tensor-based approach on deforestation
imagery.- Strategic Incorporation of Synthetic Data for Performance
Enhancement in Deep Learning A Case Study on Object Tracking
Tasks.- Autonomous Navigation Via A Cascading CNN Framework Leveraging
Synthetic Terrain Images.- ST: Data Gathering, Curation, and Generation for
Computer Vision and Robotics in Precision Agriculture.- Synthetically labeled
images for maize plant detection in UAS images.- An open source simulation
toolbox for annotation of images and point clouds in agricultural
scenarios.- Multimodal Dataset for Localization, Mapping and Crop Monitoring
in Citrus Tree Farms.- Identification of Abnormality in Maize Plants From
UAV Images Using Deep Learning Approaches.- Deep Learning for Super
Resolution of Sugarcane Crop Line Imagery from Unmanned Aerial Vehicles.