Preface |
|
ix | |
|
Part I Foundations of Analytics in Excel |
|
|
|
1 Foundations of Exploratory Data Analysis |
|
|
3 | (24) |
|
What Is Exploratory Data Analysis? |
|
|
3 | (2) |
|
|
5 | (1) |
|
|
5 | (4) |
|
Demonstration: Classifying Variables |
|
|
9 | (2) |
|
|
11 | (1) |
|
Exploring Variables in Excel |
|
|
11 | (1) |
|
Exploring Categorical Variables |
|
|
12 | (3) |
|
Exploring Quantitative Variables |
|
|
15 | (11) |
|
|
26 | (1) |
|
|
26 | (1) |
|
2 Foundations of Probability |
|
|
27 | (14) |
|
Probability and Randomness |
|
|
27 | (1) |
|
Probability and Sample Space |
|
|
28 | (1) |
|
Probability and Experiments |
|
|
28 | (1) |
|
Unconditional and Conditional Probability |
|
|
28 | (1) |
|
Probability Distributions |
|
|
29 | (1) |
|
Discrete Probability Distributions |
|
|
29 | (3) |
|
Continuous Probability Distributions |
|
|
32 | (8) |
|
|
40 | (1) |
|
|
40 | (1) |
|
3 Foundations of Inferential Statistics |
|
|
41 | (20) |
|
The Framework of Statistical Inference |
|
|
42 | (1) |
|
Collect a Representative Sample |
|
|
42 | (1) |
|
|
43 | (2) |
|
Formulate an Analysis Plan |
|
|
45 | (2) |
|
|
47 | (3) |
|
|
50 | (7) |
|
It's Your World the Data's Only Living in It |
|
|
57 | (1) |
|
|
58 | (1) |
|
|
59 | (2) |
|
4 Correlation and Regression |
|
|
61 | (18) |
|
"Correlation Does Not Imply Causation" |
|
|
61 | (1) |
|
|
62 | (5) |
|
From Correlation to Regression |
|
|
67 | (2) |
|
Linear Regression in Excel |
|
|
69 | (6) |
|
Rethinking Our Results: Spurious Relationships |
|
|
75 | (1) |
|
|
76 | (1) |
|
Advancing into Programming |
|
|
77 | (1) |
|
|
77 | (2) |
|
5 The Data Analytics Stack |
|
|
79 | (14) |
|
Statistics Versus Data Analytics Versus Data Science |
|
|
79 | (1) |
|
|
79 | (1) |
|
|
80 | (1) |
|
|
80 | (1) |
|
|
80 | (1) |
|
|
81 | (1) |
|
Distinct, but Not Exclusive |
|
|
81 | (1) |
|
The Importance of the Data Analytics Stack |
|
|
81 | (1) |
|
|
82 | (3) |
|
|
85 | (1) |
|
Business Intelligence Platforms |
|
|
86 | (1) |
|
Data Programming Languages |
|
|
87 | (1) |
|
|
88 | (1) |
|
|
89 | (1) |
|
|
89 | (4) |
|
|
|
6 First Steps with R for Excel Users |
|
|
93 | (16) |
|
|
93 | (1) |
|
Getting Started with RStudio |
|
|
94 | (9) |
|
|
103 | (1) |
|
Upgrading R, RStudio, and R Packages |
|
|
104 | (1) |
|
|
105 | (2) |
|
|
107 | (2) |
|
|
109 | (14) |
|
|
109 | (2) |
|
Indexing and Subsetting Vectors |
|
|
111 | (1) |
|
From Excel Tables to R Data Frames |
|
|
112 | (3) |
|
|
115 | (3) |
|
|
118 | (2) |
|
Indexing and Subsetting Data Frames |
|
|
120 | (1) |
|
|
121 | (1) |
|
|
122 | (1) |
|
|
122 | (1) |
|
8 Data Manipulation and Visualization in R |
|
|
123 | (22) |
|
Data Manipulation with dplyr |
|
|
124 | (1) |
|
|
124 | (3) |
|
|
127 | (2) |
|
Aggregating and Joining Data |
|
|
129 | (3) |
|
dplyr and the Power of the Pipe (% < %) |
|
|
132 | (2) |
|
Reshaping Data with tidyr |
|
|
134 | (2) |
|
Data Visualization with ggplot2 |
|
|
136 | (6) |
|
|
142 | (1) |
|
|
143 | (2) |
|
9 Capstone: R for Data Analytics |
|
|
145 | (16) |
|
Exploratory Data Analysis |
|
|
146 | (4) |
|
|
150 | (1) |
|
Independent Samples t-test |
|
|
151 | (2) |
|
|
153 | (2) |
|
Train/Test Split and Validation |
|
|
155 | (3) |
|
|
158 | (1) |
|
|
158 | (3) |
|
Part III From Excel to Python |
|
|
|
10 First Steps with Python for Excel Users |
|
|
161 | (14) |
|
|
161 | (1) |
|
Getting Started with Jupyter |
|
|
162 | (8) |
|
|
170 | (2) |
|
Upgrading Python, Anaconda, and Python packages |
|
|
172 | (1) |
|
|
172 | (1) |
|
|
173 | (2) |
|
11 Data Structures in Python |
|
|
175 | (12) |
|
|
176 | (2) |
|
Indexing and Subsetting NumPy Arrays |
|
|
178 | (1) |
|
Introducing Pandas DataF rames |
|
|
179 | (1) |
|
|
180 | (2) |
|
|
182 | (1) |
|
Indexing and Subsetting DataFrames |
|
|
183 | (1) |
|
|
184 | (1) |
|
|
184 | (1) |
|
|
185 | (2) |
|
12 Data Manipulation and Visualization in Python |
|
|
187 | (16) |
|
|
188 | (2) |
|
|
190 | (2) |
|
Aggregating and Joining Data |
|
|
192 | (1) |
|
|
193 | (2) |
|
|
195 | (5) |
|
|
200 | (1) |
|
|
201 | (2) |
|
13 Capstone: Python for Data Analytics |
|
|
203 | (10) |
|
Exploratory Data Analysis |
|
|
204 | (2) |
|
|
206 | (1) |
|
Independent Samples T-test |
|
|
207 | (1) |
|
|
208 | (1) |
|
Train/Test Split and Validation |
|
|
209 | (2) |
|
|
211 | (1) |
|
|
211 | (2) |
|
14 Conclusion and Next Steps |
|
|
213 | (4) |
|
Further Slices of the Stack |
|
|
213 | (1) |
|
Research Design and Business Experiments |
|
|
213 | (1) |
|
Further Statistical Methods |
|
|
214 | (1) |
|
Data Science and Machine Learning |
|
|
214 | (1) |
|
|
214 | (1) |
|
|
215 | (1) |
|
Go Forth and Data How You Please |
|
|
215 | (1) |
|
|
216 | (1) |
Index |
|
217 | |