Muutke küpsiste eelistusi

E-raamat: Adventure Of The Large Hadron Collider, The: From The Big Bang To The Higgs Boson

(Cea/irfu, France & Paris-saclay Univ, France), (Cern, Switzerland), (Cnrs/in2p3, France, Cea/irfu, France & Paris-saclay Univ, France), (Lpnhe, France, Cnrs/in2p3, France & Sorbonne Univ, France)
  • Formaat: 620 pages
  • Ilmumisaeg: 08-Nov-2021
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789813236103
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 122,85 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 620 pages
  • Ilmumisaeg: 08-Nov-2021
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789813236103
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

An introduction to the world of quarks and leptons, and of their interactions governed by fundamental symmetries of nature, as well as an introduction to the connection that exists between worlds of the infinitesimally small and the infinitely large.The book begins with a simple presentation of the theoretical framework, the so-called Standard Model, which evolved gradually since the 1960s. The key experiments establishing it as the theory of elementary particle physics, but also its missing pieces and conceptual weaknesses are introduced. The book proceeds with the extraordinary story of the Large Hadron Collider at CERN the largest purely scientific project ever realized. Conception, design and construction by worldwide collaborations of the detectors of size and complexity without precedent in scientific history are discussed. The book then offers the reader a state-of-the art (2020) appreciation of the depth and breadth of the physics exploration performed by the LHC experiments: the study of new forms of matter, the understanding of symmetry-breaking phenomena at the fundamental level, the exciting searches for new physics such as dark matter, additional space dimensions, new symmetries, and more. The adventure of the LHC culminated in the discovery of the Higgs boson in 2012 (Nobel Prize in Physics in 2013). The last chapter of this book describes the plans for the LHC during the next 15 years of exploitation and improvement, and the possible evolution of the field and future collider projects under consideration.The authors are researchers from CERN, CEA and CNRS (France), and deeply engaged in the LHC program: D Denegri in the CMS experiment, C Guyot, A Hoecker and L Roos in the ATLAS experiment. Some of them are involved since the inception of the project. They give a lively and accessible inside view of this amazing scientific and human adventure.
Acknowledgements vii
Foreword ix
About the Authors xix
List of Insets and Digressions
xxiii
Introduction xxv
1 The Standard Model of Elementary Particle Physics
1(70)
1.1 Particles of matter, interaction fields and Standard Model parameters
1(11)
1.2 The Standard Model in our daily lives
12(10)
1.3 External and internal symmetries
22(7)
1.4 Gauge invariance and fundamental interactions
29(4)
1.5 When a symmetry breaks down spontaneously: The Brout--Englert--Higgs mechanism
33(8)
1.6 Electroweak unification, the Glashow--Weinberg--Salam model
41(7)
1.7 Dirac theory and antiparticles
48(4)
1.8 Violation of matter--antimatter symmetry
52(4)
1.9 Quantum field theory and virtual corrections
56(4)
1.10 Running coupling constants
60(11)
2 Key Experiments Establishing the Standard Model
71(30)
2.1 The beginnings of experimental particle physics
71(6)
2.2 First successes
77(4)
2.3 Discovery of the W and Z bosons
81(9)
2.4 LEP and the consolidation of the Standard Model
90(8)
2.5 CP violation
98(3)
3 What the Standard Model Cannot Explain
101(22)
3.1 Invisible matter: dark matter
103(6)
3.2 A repulsive energy: dark energy
109(2)
3.3 Asymmetry between baryonic matter and antimatter
111(2)
3.4 Matter--antimatter symmetry in strong interactions
113(1)
3.5 Neutrino masses
114(2)
3.6 Gravity
116(2)
3.7 The Higgs boson is light
118(4)
3.8 The origin of the Higgs potential
122(1)
4 How Could New Physics Look Like?
123(22)
4.1 Supersymmetry
123(5)
4.2 Unification of strong and electroweak forces
128(7)
4.3 Hidden dimensions in the Universe
135(5)
4.4 The Higgs boson as a composite particle
140(5)
5 Back to the Big Bang
145(22)
5.1 The flight of galaxies
147(2)
5.2 Cosmic microwave background radiation
149(1)
5.3 Primordial nucleosynthesis of light elements
150(3)
5.4 Accelerating expansion of the Universe
153(7)
5.5 The Big Bang, particle physics and the LHC
160(7)
6 The LHC
167(34)
6.1 Historical development of acceleration technologies
167(8)
6.1.1 Cyclotrons and synchrocyclotrons, early ancestors of the LHC
168(2)
6.1.2 Synchrotrons
170(5)
6.2 Hadron colliders
175(7)
6.2.1 The first proton--proton collider: the ISR
175(2)
6.2.2 CERN's proton--antiproton collider SppS
177(3)
6.2.3 The Tevatron collider at Fermilab
180(2)
6.3 A new hadron collider
182(8)
6.3.1 LHC versus SSC
183(1)
6.3.2 1989: launch of the LHC project
184(2)
6.3.3 Study of the LHC's physics potential
186(2)
6.3.4 LHC approval
188(1)
6.3.5 Challenges for the detectors
189(1)
6.4 The long way towards the LHC start-up
190(11)
6.4.1 The LHC magnets
190(4)
6.4.2 The eight octants of the LHC and the experimental areas
194(3)
6.4.3 Cost of LHC
197(4)
7 What is a Particle Detector?
201(18)
7.1 Particle detection techniques
201(6)
7.2 Design principles of a collider detector
207(12)
7.2.1 Inner tracking detectors
208(2)
7.2.2 Electromagnetic calorimeters
210(2)
7.2.3 Hadronic calorimeters
212(2)
7.2.4 Muon spectrometers
214(5)
8 The ATLAS and CMS Experiments
219(42)
8.1 Proto-collaborations EAGLE, ASCOT, L3P, CMS
219(5)
8.2 The CMS experiment
224(14)
8.2.1 A detector built around its magnet
224(2)
8.2.2 Inner tracker
226(5)
8.2.3 Electromagnetic calorimeter
231(3)
8.2.4 Hadronic calorimeter
234(1)
8.2.5 Muon spectrometer
235(3)
8.2.6 Financial matters
238(1)
8.3 The ATLAS experiment
238(12)
8.3.1 Inner tracking detectors
238(4)
8.3.2 Calorimeter systems
242(4)
8.3.3 ATLAS muon spectrometer
246(4)
8.4 Trigger and data acquisition systems of ATLAS & CMS
250(3)
8.5 Organisation of the large international collaborations in particle physics
253(8)
9 LHC Start-Up and Data Taking
261(24)
9.1 A promising start
261(3)
9.2 The incident of September 19th, 2008
264(2)
9.3 Successful collisions
266(2)
9.4 The LHC Run 1 (2010--2013)
268(6)
9.5 Long LHC shutdown 1 and high-energy restart
274(4)
9.6 The LHC Run 2 (2015--2018)
278(4)
9.7 Long LHC shutdown 2 (2019 to end of 2021)
282(3)
10 Data Analysis
285(32)
10.1 What does data analysis involve?
286(24)
10.1.1 Event reconstruction
288(2)
10.1.2 Calibration and alignment of detector systems
290(3)
10.1.3 Signal and backgrounds
293(9)
10.1.4 Systematic uncertainties
302(1)
10.1.5 Event and detector simulation
302(7)
10.1.6 The Z boson: A standard candle to study the detector performance
309(1)
10.2 Information technology challenges and the worldwide LHC computing grid
310(7)
11 The Higgs Boson: Search and Discovery
317(48)
11.1 The LEP era
317(4)
11.2 Tevatron times
321(6)
11.3 Higgs boson search at the LHC
327(6)
11.4 Here, at last!
333(6)
11.5 Is it really the Higgs boson?
339(8)
11.6 The Nobel Prize
347(1)
11.7 Extending and deepening the Higgs-boson studies
348(17)
12 Testing the Standard Model
365(48)
12.1 Production rates of particles at the LHC
367(3)
12.2 Multi-boson production and vector boson scattering
370(7)
12.3 Study of the top quark
377(13)
12.3.1 Search and discovery at the Tevatron
378(4)
12.3.2 Top-quark physics at the LHC
382(8)
12.4 Precision measurements of the W-boson mass
390(4)
12.5 Standard Model self-consistency test
394(3)
12.6 Forward physics: the TOTEM, ATLAS-ALFA/AFP, CT-PPS, and LHCf experiments
397(10)
12.7 The LHC as a photon collider
407(4)
12.8 Precision
411(2)
13 The Quest for New Physics
413(56)
13.1 Searches for new physics with jets
413(3)
13.2 Di-lepton resonances --- mediators of grand unification?
416(8)
13.3 Where is supersymmetry?
424(15)
13.3.1 A challenging search
425(5)
13.3.2 Squarks and gluinos
430(1)
13.3.3 Stop and sbottom
431(2)
13.3.4 Gauginos and sleptons
433(2)
13.3.5 The Higgs sector
435(1)
13.3.6 Supersymmetry endgame?
436(3)
13.4 Strong gravity in extra space dimensions
439(5)
13.5 Black holes at the LHC?
444(5)
13.6 Higgs boson compositeness
449(4)
13.7 The search for dark matter at the LHC
453(9)
13.8 Long-lived massive particles
462(4)
13.9 Paradox
466(3)
14 LHCb and ALICE: The Physics of Flavour and of Hot & Dense Matter
469(32)
14.1 Flavour physics and the LHCb experiment
470(14)
14.1.1 The LHCb detector
470(4)
14.1.2 Observation of the rare decay Bs0 → μ+μ-
474(3)
14.1.3 Study of CP violation with Bs0 mesons
477(2)
14.1.4 Tests of lepton flavour universality
479(2)
14.1.5 Exotic multi-quarks states
481(3)
14.2 Heavy-ion collision physics and the ALICE detector
484(17)
14.2.1 The quark--gluon plasma
484(2)
14.2.2 The ALICE detector
486(4)
14.2.3 Selected heavy-ion physics results
490(11)
15 Looking Ahead
501(60)
15.1 Towards the High-Luminosity LHC
503(19)
15.1.1 Accelerator-collider complex
506(1)
15.1.2 Detector upgrades
507(4)
15.1.3 Physics goals
511(1)
15.1.4 The Higgs sector
512(6)
15.1.5 Triple and quartic vector boson couplings
518(1)
15.1.6 Direct searches for new physics
519(3)
15.2 The next big thing
522(37)
15.2.1 Future electron--positron colliders
524(15)
15.2.2 Future hadron collider
539(11)
15.2.3 Electron--hadron collider
550(3)
15.2.4 Muon colliders
553(6)
15.3 Courage
559(2)
16 Conclusions
561(8)
Units of Length, Time, Mass--Energy, and Some Typical Physical Scales 569(4)
Bibliography 573(10)
Index 583