Muutke küpsiste eelistusi

E-raamat: Aerodynamics Principles for Air Transport Pilots

(Massey University, New Zealand)
  • Formaat: 266 pages
  • Ilmumisaeg: 13-Apr-2020
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9780429523274
  • Formaat - PDF+DRM
  • Hind: 143,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 266 pages
  • Ilmumisaeg: 13-Apr-2020
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9780429523274

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Equipping readers with the ability to analyze the aerodynamic forces on an aircraft, the book provides comprehensive knowledge of the characteristics of subsonic and supersonic airflow.

This book begins with the fundamental physics principles of aerodynamics, then introduces the Continuity Equation, Energy Equations, and Bernoullis Equation, which form the basic aerodynamic principles for subsonic airflow. It provides a thorough understanding of the forces acting on an aircraft across a range of speeds and their effects on the aircraft's performance, including a discussion on the difference in aerofoil and aircraft shapes. Aircraft stability issues are analyzed, along with the development of a boundary layer over an aerofoil, the changes of air speed and air pressure, and boundary layer separation.

Readers will gain a clear understanding of the nature of airflow over aircraft during subsonic, transonic, and supersonic flight. The book emphasizes the connection between operating actions in flight and aerodynamic requirements. The content will be of interest to senior undergraduates studying to obtain their Airline Transport Pilot License (ATPL)/Airline Transport Pilot (ATP) certificate, general aviation and air transport pilots, and aircraft maintenance engineers.
Preface xi
Acknowledgment xiii
Author xv
Notation xvii
1 Calculus Revision
1(14)
Differentiation
1(2)
Function analysis (derivatives)
3(3)
Extreme values
4(2)
Derivatives of functions of multi-variables
6(4)
Partial differentiation
6(1)
Gradient V
7(2)
Total derivative
9(1)
Integration
10(3)
Indefinite integral
11(1)
Definite integral
12(1)
Exercises
13(2)
2 Fundamental Principles of Aerodynamics (Subsonic)
15(24)
Continuity Equation
15(2)
Bernoulli's Equation
17(11)
Stagnation Pressure
21(1)
Applications of Bernoulli's Equation
22(1)
Venturi Tube (Flowrate Meter)
22(2)
Pitot Tube (Airspeed)
24(1)
Lift Produced by a Subsonic Aerofoil
25(1)
Ideal Gas Law
26(2)
First Law of Thermodynamics
28(1)
Processes
29(5)
p-V Diagram
29(1)
Isothermal Process
30(1)
Isobaric Process
31(1)
Isochoric (Isovolumetric) Process
31(2)
Adiabatic Process
33(1)
Energy Equation
34(3)
Stagnation Temperature
36(1)
Exercises
37(2)
3 Viscous Flow and Boundary Layer
39(22)
Viscosity
39(3)
Effect of Pressure and Temperature on Viscosity
40(2)
Pressure Loss
42(2)
Reynolds Number and Regimes of Viscous Flow
44(3)
Reynolds Number
45(1)
Regimes of Viscous Flow
45(2)
Boundary Layers
47(13)
Structure of the Boundary Layer
48(2)
Viscous Flow of Boundary Layer
50(1)
Speed Profile within the Boundary Layer
50(2)
Viscous Friction (Skin Drag)
52(2)
Boundary-Layer Separation over a Curved Surface (Stall)
54(3)
Form Drag - Separation Drag
57(3)
Exercises
60(1)
4 Aerodynamic Forces - Subsonic Flight
61(32)
Geometric Features of Aerofoils
61(4)
Name of Aerofoil
62(2)
Finite/Infinite Wings
64(1)
Theory of Lift
65(9)
Bernoulli's Theorem
66(1)
PDE Aerodynamics System
67(2)
Circulation Theory of Lift
69(5)
Drag
74(10)
Induced Drag
75(2)
Induced Drag Coefficient
77(2)
Parasite Drag
79(1)
Skin Drag
80(1)
Form Drag
80(1)
Interference Drag
81(2)
Total Drag
83(1)
Features of Aerofoil on Aerodynamic Forces
84(8)
Thickness of Aerofoil
84(2)
Aspect Ratio of Aerofoil
86(1)
Camber of Aerofoil
87(1)
Laminar Flow Aerofoil
88(1)
Features to Delay/Prevent Boundary Layer Separation
88(3)
Shape of Wing Tip
91(1)
Washout
92(1)
Exercises
92(1)
5 Stability
93(30)
Revision on Moment
93(4)
Aerodynamic Forces
93(1)
Principles of Moment
93(1)
Moment
94(2)
Force Couple
96(1)
Superposition of Force
96(1)
Pitch Moment and Pitch Moment Coefficient
97(6)
Aerodynamic Center (AC)
99(1)
Calculation of Aerodynamic Center
99(4)
Longitudinal Stability
103(5)
Effects on Longitudinal Stability
103(1)
Wings
104(1)
Center of Gravity (CG)
104(1)
Tail Plane
105(1)
Fuselage
106(1)
Longitudinal Dihedral
106(1)
Longitudinal Stability Diagram
107(1)
Lateral Stability
108(6)
Factors on Lateral Stability
109(1)
Lateral Dihedral
109(1)
Shielding
110(1)
Wing Position (Vertical)
111(1)
Fin Area
111(1)
Sweep-Back Wings
112(1)
Lateral Stability Diagram
112(2)
Directional Stability
114(5)
Factors on Directional Stability
115(1)
Fin
115(1)
Side/"Keel" Area
116(1)
Position of CG
117(1)
Sweep-Back Wing
117(1)
Directional Stability Diagram
117(2)
Lateral and Directional Stability (Dynamic)
119(1)
Spiral Instability
119(1)
Dutch Roll
119(1)
Design Requirements for Lateral and Directional Stability
120(1)
Longitudinal Dynamic Stability
120(1)
Phugoid Mode
120(1)
Short Period Mode
121(1)
Exercises
121(2)
6 Speed of Sound and Mach Number
123(14)
Speed of Sound in Air
123(3)
Mach Number
126(5)
Mach Wave
127(1)
Shockwaves
128(1)
Special Mach Numbers
129(2)
Ranges of Flights
131(1)
Mach Number Measurement
131(3)
Low Subsonic Flight
131(1)
High Subsonic and Low Transonic Flight
132(1)
Supersonic Flight
133(1)
Mach Number Applications
134(2)
Exercises
136(1)
7 Compressible Air Flow
137(22)
Compressible 1-D Airflow System
137(7)
Continuity Equation
137(1)
Momentum (Euler) Equation
138(1)
Energy Equation
138(1)
Ideal Gas Law (State Equation of Gas)
138(1)
Critical Point
138(4)
Speed Coefficient M*
142(2)
Compressible Airflow with a Variable Area of Flow Path
144(6)
Converging-Diverging Nozzle
147(3)
Shockwave
150(6)
Formation of Shockwave
150(1)
Air Properties Before and after a Normal Shockwave
150(6)
Shockwave in a Flow Path
156(2)
Exercises
158(1)
8 Aerodynamics of Transonic Aerofoils
159(16)
Shockwaves on Aerofoil
159(4)
Structure of Shockwave on Aerofoil
159(2)
Movement of Shockwave on Aerofoil
161(2)
Effective Critical Mach Number
163(1)
Changes of CP, CL, and CD on a Transonic Aerofoil
163(5)
Shockwave on Lift
163(1)
Shock Drag
164(1)
Wave Drag
164(1)
Boundary Separation Drag
164(1)
Changes of CP, CL, and CD between Mcrit to Mdet
165(3)
Shock Stall
168(1)
Shockwaves on Control Surfaces
169(5)
Transonic Control Issues
169(1)
Longitudinal
169(3)
Lateral
172(1)
Directional
172(2)
Exercises
174(1)
9 Transonic Flight and Aerofoils
175(18)
Transonic Speed Limits
175(4)
Coffin Corner
176(1)
Buffet Boundary
177(1)
Effects on Buffet Boundary
178(1)
Cross-Over Altitude
179(1)
Increase Mcrit
180(3)
Slimness
181(1)
Flat Leading Edge
182(1)
Sweepback
182(1)
Vortex Generators
183(1)
Transonic Aerofoils
183(7)
Low Thickness to Chord Ratio tic
183(2)
Supercritical Aerofoil
185(1)
Sweepback Wings
186(3)
Devices to Delay Shock Stall
189(1)
Wing Fences
189(1)
Vortex Generators
190(1)
Anti-Shock Body
190(1)
Area Rule
190(1)
Exercises
191(2)
10 Supersonic Waves
193(20)
Two Examples of Reversible and Irreversible Adiabatic Processes (Supersonic)
193(2)
Reversible
193(1)
Irreversible
194(1)
Oblique Shockwaves
195(10)
Air Properties Before and After an Oblique Shockwave
196(4)
e-p-M Equation
200(5)
Expansion Waves
205(6)
Air Properties before and after Expansion Waves
206(2)
Size of Expansion Region
208(1)
The Limit of Expansion
209(2)
Exercises
211(2)
11 Introduction of Supersonic Flight
213(18)
Supersonic Flow over Aerofoil
213(9)
Thin Plate
214(1)
Pressure Coefficient
214(2)
Double Wedge
216(3)
Biconvex
219(3)
Boundary Layer and Drag
222(2)
Boundary Layer in Supersonic Flow
222(1)
Drag of Supersonic Flight
223(1)
Supersonic Wings and Planforms
224(4)
Unswept Wings
224(1)
Swept Wings
225(1)
Delta Wings
225(1)
Variable Sweep Wings
226(1)
Body Shapes of Supersonic Airplanes
227(1)
Kinetic Heating
228(2)
Supersonic Control
230(1)
Appendix I List of Derivatives 231(2)
Appendix II 6-B-M Diagram 233(2)
Appendix III Prandtl-Meyer Function 235(2)
Appendix IV Answers to Exercises 237(6)
References 243(2)
Index 245
Rose G Davies works at the School of Aviation, Massey University, New Zealand. She developed, and coordinates the current aerodynamics courses for the BAv degree in the Massey University Air Transport Program. She has teaching experience in aero-science and aircraft systems, physics and mathematics, and the foundation courses for various degrees. Rose has a Bachelors degree in mechanical engineering, majoring in internal combustion engine design, a Masters degree in engineering-thermophysicscombustion, and a PhD in applied mathematics. Before starting her university teaching career, Rose had some 20 years research experience in mathematical modelling and fluid dynamics, combustion, and remote sensing of engine emissions. She is a member of ASME, AIAA, ANZIAM, and the Royal Society New Zealand, and a member of the Editorial Board of the Journal of Aviation/Aerospace Education and Research (JAAER).