Muutke küpsiste eelistusi

E-raamat: Affine and Projective Geometry

(University of Massachusetts, Amherst)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 14-Feb-2011
  • Kirjastus: Wiley-Interscience
  • Keel: eng
  • ISBN-13: 9781118030820
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 213,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 14-Feb-2011
  • Kirjastus: Wiley-Interscience
  • Keel: eng
  • ISBN-13: 9781118030820
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A textbook for a two-semester advanced undergraduate course for students of mathematics and math education, especially those intending to teach high school. The first part demonstrates the correlations between synthetic geometry and linear algebra; the second uses geometry to introduce lattice theory. The fundamental theorem of projective geometry is also explained. Annotation copyright Book News, Inc. Portland, Or.

An important new perspective on AFFINE AND PROJECTIVE GEOMETRY

This innovative book treats math majors and math education students to a fresh look at affine and projective geometry from algebraic, synthetic, and lattice theoretic points of view.

Affine and Projective Geometry comes complete with ninety illustrations, and numerous examples and exercises, covering material for two semesters of upper-level undergraduate mathematics. The first part of the book deals with the correlation between synthetic geometry and linear algebra. In the second part, geometry is used to introduce lattice theory, and the book culminates with the fundamental theorem of projective geometry.

While emphasizing affine geometry and its basis in Euclidean concepts, the book:
* Builds an appreciation of the geometric nature of linear algebra
* Expands students' understanding of abstract algebra with its nontraditional, geometry-driven approach
* Demonstrates how one branch of mathematics can be used to prove theorems in another
* Provides opportunities for further investigation of mathematics by various means, including historical references at the ends of chapters


Throughout, the text explores geometry's correlation to algebra in ways that are meant to foster inquiry and develop mathematical insights whether or not one has a background in algebra. The insight offered is particularly important for prospective secondary teachers who must major in the subject they teach to fulfill the licensing requirements of many states. Affine and Projective Geometry's broad scope and its communicative tone make it an ideal choice for all students and professionals who would like to further their understanding of things mathematical.
Affine Planes.
Desarguesian Affine Planes.
Introducing Coordinates.
Coordinate Projective Planes.
Affine Space.
Projective Space.
Lattices of Flats.
Collineations.
Appendices.
Index.


M. K. BENNETT is Professor of Mathematics at the University of Massachusetts, Amherst, where she earned her PhD in 1966. She was a John Wesley Young Postdoctoral Research Fellow at Dartmouth College, has authored numerous research articles on lattice theory, geometry, and quantum logics and has lectured on her work around the globe.