Muutke küpsiste eelistusi

E-raamat: Agents and Data Mining Interaction: 4th International Workshop on Agents and Data Mining Interaction, ADMI 2009, Budapest, Hungary, May 10-15,2009, Revised Selected Papers

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Computer Science 5680
  • Ilmumisaeg: 30-Jul-2009
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783642036033
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Computer Science 5680
  • Ilmumisaeg: 30-Jul-2009
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783642036033
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The2009InternationalWorkshoponAgentsandDataMiningInteraction(ADMI 2009) was a joint event with AAMAS2009. In recentyears,agents and data mining interaction (ADMI), or agent mining forshort,hasemergedasaverypromisingresearch eld. Followingthesuccessof ADMI 2006 in Hong Kong, ADMI 2007 in San Jose, and ADMI 2008 in Sydney, the ADMI 2009 workshop in Budapest provided a premier forum for sharing research and engineering results, as well as potential challenges and prospects encountered in the synergy between agents and data mining. As usual, the ADMI workshop encouraged and promoted theoretical and applied research and development, which aims at: – Exploitingagent-drivendatamininganddemonstratinghowintelligentagent technology can contribute to critical data mining problems in theory and practice – Improving data mining-driven agents and showing how data mining can strengthen agent intelligence in research and practical applications – Exploring the integration of agents and data mining toward a super-intelligent information processing and systems – Identifying challenges and directions for future research on the synergy between agents and data mining ADMI 2009 featured two invited talks and twelve selected papers. The ?rst invited talk was on “Agents and Data Mining in Bioinformatics,” with the s- ond focusing on “Knowledge-Based Reinforcement Learning. ” The ten accepted papers are from seven countries. A majority of submissions came from Eu- pean countries, indicating the boom of ADMI research in Europe. In addition the two invited papers, addressed fundamental issues related to agent-driven data mining, data mining-driven agents, and agent mining applications. The proceedings of the ADMI workshops will be published as part of the LNAIseriesbySpringer. WeappreciatethesupportofSpringer,andinparticular Alfred Hofmann.
Invited Talks and Papers.- Agents and Data Mining in Bioinformatics:
Joining Data Gathering and Automatic Annotation with Classification and
Distributed Clustering.- Knowledge-Based Reinforcement Learning for Data
Mining.- Ubiquitous Intelligence in Agent Mining.- Agents Based Data Mining
and Decision Support System.- Agent-Driven Data Mining.- Agent-Enriched Data
Mining Using an Extendable Framework.- Auto-Clustering Using Particle Swarm
Optimization and Bacterial Foraging.- A Self-Organized Multiagent System for
Intrusion Detection.- Towards Cooperative Predictive Data Mining in
Competitive Environments.- Data Mining Driven Agents.- Improving Agent
Bidding in Power Stock Markets through a Data Mining Enhanced Agent
Platform.- Enhancing Agent Intelligence through Data Mining: A Power Plant
Case Study.- A Sequence Mining Method to Predict the Bidding Strategy of
Trading Agents.- Agent Mining Applications.- Agent Assignment for Process
Management: Pattern Based Agent Performance Evaluation.- Concept Learning for
Achieving Personalized Ontologies: An Active Learning Approach.- The Complex
Dynamics of Sponsored Search Markets.