Muutke küpsiste eelistusi

E-raamat: Aggregation of Luminophores in Supramolecular Systems: From Mechanisms to Applications

, (Govt. College Tokapal, Bastar, India)
  • Formaat: 220 pages
  • Ilmumisaeg: 06-May-2020
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000063356
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 227,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 220 pages
  • Ilmumisaeg: 06-May-2020
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000063356
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Supramolecular aggregation—driven by weak non-covalent interactions, such as van der Waals, p–p interactions, hydrogen bonding, and electrostatic—has been utilized to build sensing platforms with improved selectivity and sensitivity. Supramolecular aggregates, owing to cooperative interactions, higher sensitivity and selectivity, relatively weak and dynamic non-covalent interactions, and environmental adaptation, have achieved better sensing performance than that of molecular sensory systems that rely on sensors with delicate structures.

Aggregation of Luminophores in Supramolecular System: From Mechanisms to Applications

describes recent advances in supramolecular chemistry, in which the luminophores are almost non-luminescent in the molecular state, but become highly emissive in the aggregate state. These advances bring new opportunities and challenges for the development of supramolecular chemistry. The intermolecular non-covalent interactions have been considered to be the main driving forces for fabricating supramolecular systems with aggregating luminophores and have an important influence on the luminescence properties of the probes. Based on these unique properties, luminescent supramolecular aggregates have greatly promoted the development of novel materials for applications as sensors, bio-imaging agents, organic electronic devices, and in the field of drug delivery.

Features:

? Discussion of fundamental and interdisciplinary aspects of the aggregation in supramolecular systems.

? Narration of intermolecular interactions and the photophysical phenomenon of aggregation in supramolecular systems.

? Comparative discussion on recent developments in aggregation-induced quenching (AIQ) and aggregation-induced emission (AIE), and drawbacks of AIQ.

? Description of the technological applications of aggregation as biological sensors, chemical sensors, organic electronic materials, and in the field of drug delivery.

? A convenient format for checking formulas and definitions.

This book surveys highlights of the progress made in the field of the aggregation of luminophores in supramolecular chemistry. It is hoped that the work will form a foundation (and indeed a motivation) for new workers in the area, as well as also being useful to experienced supramolecular chemists. It may also aid workers in the biological area to see Nature’s aggregation in a new light. Further, the approach employed has been designed to provide readable background material for use with graduates, senior undergraduates, research professionals, and industries.

Preface xi
Acknowledgment xiii
Authors xv
Chapter 1 Supramolecular Chemistry: Preface
1(10)
1.1 Introduction
1(1)
1.2 Host-Guest Chemistry
1(1)
1.3 Aggregation: Introduction
2(3)
1.3.1 Aggregation---Thermodynamics Point of View
4(1)
1.3.2 Aggregation---Kinetics Point of View
5(1)
1.4 Aggregation and Self-Assembly: Discrimination
5(4)
References
9(2)
Chapter 2 Intermolecular Interactions: Driving Forces for the Formation of Supramolecular Structures
11(18)
2.1 Introduction
11(1)
2.2 Ionic and Molecular Recognition
11(1)
2.3 Hydrogen Bonds
12(1)
2.4 Halogen Bond
13(2)
2.5 Electrostatic Interactions
15(1)
2.6 Ionic and Dipolar Interactions
15(1)
2.7 Charge Transfer Interactions
16(2)
2.8 Coordination Interactions
18(1)
2.9 Van der Waals Interactions
19(2)
2.10 π-Interactions
21(4)
2.11 Hydrophobic Effects
25(1)
References
26(3)
Chapter 3 Stimuli Inducing Aggregation of Luminophores
29(26)
3.1 Introduction
29(1)
3.2 Solvent
29(2)
3.3 Ion
31(2)
3.4 Light
33(4)
3.5 Heat
37(4)
3.6 Concentration
41(1)
3.7 Ph
41(4)
3.8 Miscellaneous
45(7)
References
52(3)
Chapter 4 Photophysical Phenomenon of Aggregation
55(24)
4.1 Introduction
55(3)
4.1.1 Monomer
55(2)
4.1.2 H- vs. J-Aggregates
57(1)
4.2 Aggregation-Induced Quenching
58(2)
4.3 Aggregation-Induced Emission
60(3)
4.3.1 Aggregation-Induced Quenching and Aggregation-Induced Emission Comparison
61(2)
4.4 Aggregation-Induced Emission Enhancement
63(1)
4.5 Aggregation-Induced Phosphorescence
64(3)
4.6 Aggregation-Induced Electrochemiluminescence
67(1)
4.7 Aggregation-Induced Delayed Fluorescence
68(3)
4.8 Aggregation-Induced Energy Transfer
71(1)
4.9 Aggregation-Induced Photon Upconversion
72(1)
4.10 Aggregation-Induced Resonance Raman Optical Activity
73(1)
References
73(6)
Chapter 5 Key Mechanisms That Generate New Spectroscopic Properties of Aggregates
79(28)
5.1 Photo-Induced Electron Transfer (PET)
79(3)
5.2 Resonance Energy Transfer (RET)
82(7)
5.3 Electron Exchange or Dexter Interactions
89(1)
5.4 Intramolecular Charge Transfer
90(2)
5.5 Excited-State Intramolecular Proton Transfer
92(3)
5.6 Restriction of Intramolecular Rotation (RIR)
95(2)
5.7 Restriction of Intramolecular Vibrations (RIV)
97(3)
5.8 Restriction of Intramolecular Motions (RIM)
100(1)
5.9 C=N Isomerization
101(3)
References
104(3)
Chapter 6 Aggregation of Luminophores: Examples
107(32)
6.1 Supramolecular Systems
107(19)
6.1.1 Macrocycles
107(1)
6.1.1.1 Cyclophanes
107(3)
6.1.1.2 Cyclodextrins
110(2)
6.1.1.3 Calix[ n]arenes
112(1)
6.1.2 Metallocages
113(3)
6.1.3 Dendrimers
116(3)
6.1.4 Supramolecular Polymers
119(3)
6.1.5 Metal-Organic Frameworks (MOFs)
122(4)
6.2 Short Oligomers
126(1)
6.3 Conjugated Polymers
127(2)
6.4 Small Molecule Luminophores
129(2)
6.5 Bio-inspired Luminophores
131(2)
6.6 Acyclic Structure with Dyes
133(2)
References
135(4)
Chapter 7 Technological Applications
139(64)
7.1 Biological Sensing
139(18)
7.1.1 Biomolecular Sensing
139(1)
7.1.1.1 Sensing of Biogenic Small Molecules
139(3)
7.1.1.2 Natural Macromolecules
142(4)
7.1.2 Biological Imaging
146(1)
7.1.2.1 Organic Nanoparticles (NPs)
147(7)
7.1.2.2 Polymeric NPs
154(3)
7.2 Chemical Sensing
157(22)
7.2.1 Ions
157(7)
7.2.2 Ph
164(5)
7.2.3 Gases
169(4)
7.2.4 Explosives
173(3)
7.2.5 Fingerprints
176(3)
7.3 Optoelectronic Systems
179(12)
7.3.1 Organic Light-Emitting Diodes (OLEDs)
179(4)
7.3.2 Photovoltaics
183(2)
7.3.3 Liquid Crystals (LCs)
185(4)
7.3.4 Organic Field-Effect Transistors (OFETs)
189(2)
7.4 Applications in the Drug Delivery Field
191(6)
References
197(6)
Index 203
Dr. Neetu Tripathi obtained her Ph.D. from Guru Nanak Dev University, Amritsar, India. She completed her masters with 1st rank (Gold medal) in M.Sc. She has been a recipient of the prestigious INSPIRE fellowship of the Government of India during her PhD. She has also cleared National Eligibility Test for Assistant Professor (CSIR-UGC NET), Graduate Aptitude test (GATE) in the subject of chemical sciences. Her research interests focus on the design of fluorescent molecular receptors for the detection of nitro aromatic compounds. She has published various research papers in international peer-reviewed journals (Royal Society of Chemistry and Elsevier journals).

Dr. Manoj Kumar Goshisht is an Assistant Professor of Chemistry in the Govt. College Tokapal, Bastar, Chhattishgarh. He obtained his Ph.D. from Dr. B R Ambedkar National Institute of Technology Jalandhar, India. He has cleared National Eligibility Test for Assistant Professor (CSIR-UGC NET) in the subject of chemical sciences. His research interests include bioconjugated nanomaterials synthesis, designing drug delivery vehicle and antimicrobial agents, the study of nanoparticle-biomolecules interactions, and colloidal chemistry. He has published various research papers in international peer-reviewed journals (Royal Society of Chemistry and American Chemical Society journals).