Muutke küpsiste eelistusi

E-raamat: AI-Enabled IoT for Smart Health Care Systems

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 240,82 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The book focuses on intelligent computer-aided tools and techniques for early and precise disease diagnosis. Trending topics like deep learning and the internet of things have immense opportunities in healthcare data analytics. So, the contents of the book are targeted mainly at the automated CAD tools for healthcare data analytics. A major portion of the book emphasizes the recent state-of-the-art methodologies, tools, and datasets that are used in healthcare diagnosis, patient monitoring, healthcare recommendation systems, etc.
Preface; Role of IoT in Smart Health Care Setups: A Critical Analysis;
Internet of Things in Health Care: Architecture, Technologies, Protocols,
Applications, Challenges and Future Scope; Towards the Smart Diagnosis of
Brain Disorders Using Artificial Intelligence; Machine Learning Techniques
for IoT-Enabled Health Care Environment; AI, IoT and Wearable Technology for
Smart Health Care; Polycistic Ovarian Syndrome at a High Rise in Jammu and
Kashmir Its Early Prediction Using Decision Tree Classification Techniques;
Data-Driven Modern HealthcareHealth Care Systems with the Internet of Medical
Things Combined with Big Data and Machine Learning; Real-Time Intelligent
Application for Lifestyle and Mind State Monitoring and Simulation Using
Digital Twin, Artificial Intelligence and IoT; Explainable Artificial
Intelligence in Smart Health Care Systems; SleepEEG Study: Automated Sleep
Stage System with Machine Learning Techniques; Index.