Muutke küpsiste eelistusi

E-raamat: Alberta Oil Sands: Energy, Industry and the Environment

Volume editor (Wood Buffalo Environmental Association, Fort McMurray, Alberta, Canada)
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 142,03 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

At 170 billion barrels, Canada's Oil Sands are the third largest reserves of developable oil in the world. The Oil Sands now produce about 1.6 million barrels per day, with production expected to double by 2025 to about 3.7 million barrels per day. The Athabasca Oil Sands Region (AOSR) in northeastern Alberta is the largest of the three oil sands deposits. Bitumen in the oil sands is recovered through one of two primary methods - mining and drilling. About 20 per cent of the reserves are close to the surface and can be mined using large shovels and trucks. Of concern are the effects of the industrial development on the environment. Both human-made and natural sources emit oxides of sulphur and nitrogen, trace elements and persistent organic compounds. Of additional concern are ground level ozone and greenhouse gases.

Because of the requirement on operators to comply with the air quality regulatory policies, and to address public concerns, the not-for-profit, multi-stakeholder Wood Buffalo Environmental Association (WBEA) has since 1997 been closely monitoring air quality in AOSR. In 2008, WBEA assembled a distinguished group of international scientists who have been conducting measurements and practical research on various aspects of air emissions and their potential effects on terrestrial receptors. This book is a synthesis of the concepts and results of those on-going studies. It contains 19 chapters ranging from a global perspective of energy production, measurement methodologies and behavior of various air pollutants during fossil fuel production in a boreal forest ecosystem, towards designing and deploying a multi-disciplinary, proactive, and long-term environmental monitoring system that will also meet regulatory expectations.

  • Covers measurement of emissions from very large industrial sources in a region with huge international media profile
  • Validation of measurement technologies can be applied globally
  • The new approaches to ecological monitoring described can be applied in other forested regions
  • Arvustused

    "This volume contains papers presented at an eponymous international symposium held in conjunction with the 43rd International Air Pollution Workshop (May 2011), in Alberta, Canada. These papers, along with other included material, come from projects undertaken by the Wood Buffalo Environmental Association (WBEA), which has, since 2008, undertaken intense study of environmental monitoring activities." --Reference and Research Book News, October 2013

    Muu info

    Presents the work of an international, multidisciplinary scientific team measuring and monitoring the environmental effects of recovery of the oil from the Athabasca Oil Sands
    Contributors xv
    Acknowledgments xix
    Preface xxi
    Introduction xxv
    Introduction to the Book Series xxvii
    1 Energy Production: A Global Perspective
    1(18)
    R.L. Orbach
    1.1 The Situation
    1(9)
    1.2 Some Remedies
    10(6)
    1.2.1 Cost-Effective Capture and Storage of CO2 Through Energy Production from Saline Aquifers
    10(2)
    1.2.2 Solar Energy to Produce Transportation Fuels
    12(2)
    1.2.3 Electrical Energy Storage at Base-Load Levels
    14(2)
    1.3 Summary
    16(3)
    References
    17(2)
    2 Energy Developments in Canada's Oil Sands
    19(16)
    G. Stringham
    2.1 Introduction
    20(1)
    2.2 Early Days
    21(3)
    2.3 Opportunities and Challenges
    24(7)
    2.3.1 Greenhouse Gases and Air Quality
    25(2)
    2.3.2 Water Use, Tailings Ponds, and Quality
    27(2)
    2.3.3 Land---Impact and Reclamation
    29(1)
    2.3.4 Market Access
    30(1)
    2.4 The Path Forward
    31(4)
    2.4.1 Governments
    32(1)
    2.4.2 Industry
    32(1)
    2.4.3 Working Together
    33(1)
    References
    33(2)
    3 Energy and Environment: Toward Achieving the Balance in Alberta
    35(12)
    M. Lowey
    3.1 Introduction
    35(3)
    3.2 Air Pollution and Greenhouse Gas Emissions
    38(5)
    3.3 Water Management
    43(1)
    3.4 Land Use and Waste Management
    44(1)
    3.5 Summary
    44(3)
    References
    45(2)
    4 Air Quality in the Athabasca Oil Sands Region 2011
    47(46)
    K.E. Percy
    M.C. Hansen
    T. Dann
    4.1 The Wood Buffalo Environmental Association Ambient Air Quality Monitoring Network
    48(4)
    4.2 Major Emission Sources in the Athabasca Oil Sands
    52(1)
    4.3 Continuously Monitored Air Pollutants
    52(12)
    4.3.1 Sulfur Dioxide
    55(1)
    4.3.2 Nitrogen Dioxide
    56(1)
    4.3.3 Ozone
    56(2)
    4.3.4 Fine Particulate Matter (PM2.5)
    58(2)
    4.3.5 Ammonia
    60(1)
    4.3.6 Total Reduced Sulfur/Hydrogen Sulfide
    61(2)
    4.3.7 Hydrocarbons
    63(1)
    4.4 Time-Integrated Measurements
    64(18)
    4.4.1 Volatile Organic Compounds
    64(3)
    4.4.2 Reduced Sulfur Compounds
    67(3)
    4.4.3 Polycyclic Aromatic Hydrocarbons
    70(4)
    4.4.4 Total Gaseous Mercury Monitoring at AMS 6 Patricia McInnes
    74(8)
    4.5 2011 Air Quality Health Index Values
    82(2)
    4.6 Trends and Other Regions
    84(3)
    4.6.1 Long-Term Trends
    84(1)
    4.6.2 Other Regions
    85(2)
    4.7 Summary
    87(6)
    Acknowledgments
    89(1)
    References
    89(4)
    5 Development and Application of Statistical Approaches for Reducing Uncertainty in Ambient Air Quality Data
    93(20)
    M. Nosal
    A.H. Legge
    E.M. Nosal
    M.C. Hansen
    5.1 Introduction
    94(1)
    5.2 Recent Attempts Related to Uncertainty
    95(2)
    5.3 ISO Measurement Uncertainty Estimation Methodology
    97(2)
    5.4 Alternative Approach to Uncertainty Using the Weibull Distribution
    99(3)
    5.5 MCMs for Uncertainty Estimation
    102(3)
    5.6 Estimation of Uncertainty in WBEA Measurements
    105(3)
    5.7 Conclusions
    108(5)
    Acknowledgments
    109(1)
    References
    109(4)
    6 Co-measurement of Volatile Organic and Sulfur Compounds in the Athabasca Oil Sands Region by Dual Detector Pneumatic Focusing Gas Chromatography
    113(32)
    R.J. O'Brien
    K.E. Percy
    A.H. Legge
    6.1 Introduction
    114(2)
    6.2 Background Review
    116(1)
    6.2.1 VOC Measurements
    116(1)
    6.2.2 Sulfur Measurements
    117(1)
    6.3 Experimental Methods---Pneumatic Focusing Gas Chromatography
    117(6)
    6.3.1 VOC Measurements
    117(1)
    6.3.2 Gas Chromatography/Mass Spectrometry
    117(1)
    6.3.3 "Baseline" VOCs
    118(1)
    6.3.4 Sulfur Gas Measurements
    118(1)
    6.3.5 Dual-Detector Pneumatic Focusing GC---Principles and Operation
    119(2)
    6.3.6 Chromatographic Separation
    121(2)
    6.4 Current Locations for PFGC Monitoring in the AOSR
    123(1)
    6.5 Results and Discussion
    123(13)
    6.5.1 Sulfur Compounds
    125(5)
    6.5.2 Compound Identification, Calibration, and Quantification
    130(6)
    6.6 Recent Sulfur Measurements
    136(1)
    6.6.1 RSC Chromatograms
    136(1)
    6.6.2 Cartridge Versus Canister Samples for GC/MS Analysis
    136(1)
    6.7 Summary and Conclusions
    137(8)
    6.7.1 Current Measurement Status
    137(2)
    6.7.2 Potential Odor Compounds
    139(2)
    6.7.3 On-Going Efforts and Goals
    141(1)
    Acknowledgments
    141(2)
    References
    143(2)
    7 Overview of Real-World Emission Characterization Methods
    145(26)
    J.C. Watson
    J.C. Chow
    X.L. Wang
    S.D. Kohl
    L.-W.A. Chen
    V. Etyemezian
    7.1 Introduction
    145(3)
    7.2 Stationary Source Emissions
    148(3)
    7.3 Engine Exhaust Emissions
    151(7)
    7.4 Fugitive Dust Emissions
    158(3)
    7.5 Emerging Technologies for Source Characterization
    161(10)
    Acknowledgments
    162(1)
    References
    162(9)
    8 Measurement of Real-World Stack Emissions with a Dilution Sampling System
    171(22)
    X.L. Wang
    J.C. Watson
    J.C. Chow
    S.D. Kohl
    L.-W.A. Chen
    D.A. Sodeman
    A.H. Legge
    K.E. Percy
    8.1 Introduction
    171(3)
    8.2 Material and Methods
    174(4)
    8.2.1 Source Description and Sampling Conditions
    174(1)
    8.2.2 Dilution Sampling System
    174(4)
    8.2.3 Data Reduction
    178(1)
    8.3 Results and Discussion
    178(10)
    8.3.1 PM2.S Source Profiles
    178(3)
    8.3.2 PM Size Distributions and Optical Properties
    181(3)
    8.3.3 Gas and PM Concentrations and Emission Rates
    184(4)
    8.4 Summary
    188(5)
    Acknowledgments
    189(1)
    References
    189(4)
    9 Applying the Forest Health Approach to Monitoring Boreal Ecosystems in the Athabasca Oil Sands Region
    193(26)
    K.E. Percy
    D.C. Maynard
    A.H. Legge
    9.1 Introduction
    194(1)
    9.2 Terrestrial Environmental Monitoring in the Athabasca Oil Sands Prior to 2008
    195(5)
    9.3 Defining Forest Health
    200(1)
    9.4 TEEM Forest Health Network Design
    201(10)
    9.4.1 Conceptual Design: Area Restriction, and Adaptive Capacity
    201(2)
    9.4.2 Ecologically Analogous Plots, Indicators, and Endpoints
    203(3)
    9.4.3 Deployment and Comeasurement
    206(5)
    9.5 Investigative Studies to Enhance the TEEM Program
    211(2)
    9.6 Summary
    213(6)
    Acknowledgments
    214(1)
    References
    214(5)
    10 Ecological Analogues for Biomonitoring Industrial Sulfur Emissions in the Athabasca Oil Sands Region, Alberta, Canada
    219(24)
    D.R. Jaques
    A.H. Legge
    10.1 Introduction
    220(1)
    10.2 Overview of Methods
    221(1)
    10.3 Results
    222(12)
    10.3.1 Atmospheric Emissions
    222(1)
    10.3.2 Wind Patterns
    223(1)
    10.3.3 EAT Classification
    223(5)
    10.3.4 Air-Photo Interpretation of EAT #3 Sites
    228(5)
    10.3.5 Jack Pine Forest Stand Edges and Early Warning for Pollutant Effects
    233(1)
    10.4 Application Examples
    234(4)
    10.5 Conclusions
    238(5)
    Acknowledgment
    238(1)
    References
    238(5)
    11 Tracing Industrial Nitrogen and Sulfur Emissions in the Athabasca Oil Sands Region Using Stable Isotopes
    243(1)
    B.C. Proemse
    B. Mayer
    11.1 Introduction
    243(1)
    11.2 Study Area and Sampling
    244(2)
    11.3 Methods
    246(1)
    11.4 Results and Discussion
    247(14)
    11.4.1 Stack Emitted Particulate Matter (PM2.5)
    247(1)
    11.4.2 Atmospheric Deposition
    248(3)
    11.4.3 Lichens as Bioindicators
    251(4)
    11.4.4 Conifer Needles
    255(6)
    11.5 Summary
    261(1)
    11.6 Acknowledgments
    262(5)
    References
    262(5)
    12 Air Quality Modeling in the Athabasca Oil Sands Region
    267(44)
    M.J.E. Davies
    12.1 Introduction
    267(1)
    12.2 Historical Model Applications
    268(7)
    12.2.1 Regulatory Models
    268(1)
    12.2.2 The AOSERP/RMD and Industry Period
    269(4)
    12.2.3 The RSDS and CEMA Period
    273(2)
    12.3 WBEA Case Study: Model Input
    275(12)
    12.3.1 Spatial Boundaries
    276(1)
    12.3.2 Source and Emission Inventory
    276(3)
    12.3.3 Topography
    279(2)
    12.3.4 Land Cover
    281(2)
    12.3.5 WBEA Case Study: Meteorology
    283(4)
    12.4 WBEA Case Study: CALPUFF Model Options
    287(1)
    12.5 WBEA Case Study: Model Performance
    288(3)
    12.5.1 SO2 Comparison
    288(3)
    12.5.2 NO2 Comparison
    291(1)
    12.6 WBEA Case Study: Deposition
    291(6)
    12.6.1 Calculation Approach
    291(3)
    12.6.2 Background Deposition
    294(1)
    12.6.3 Predicted Sulfur Deposition (With Background)
    294(1)
    12.6.4 Predicted Nitrogen Deposition (With Background)
    294(1)
    12.6.5 Correlations Between Model Predictions
    295(2)
    12.7 WBEA Case Study: Lichen Comparison
    297(5)
    12.7.1 Sulfur Compounds
    299(1)
    12.7.2 Nitrogen Compounds
    299(3)
    12.8 Conclusions
    302(9)
    12.8.1 Model History
    302(1)
    12.8.2 Case Study Findings
    302(1)
    Acknowledgments
    303(1)
    References
    303(8)
    13 WBEA Receptor Modeling Study in the Athabasca Oil Sands: An Introduction
    311(4)
    S. Krupa
    14 Method for Extraction and Multielement Analysis of Hypogymnia physodes samples from the Athabasca Oil Sands Region
    315(28)
    E.S. Edgerton
    J.M. Fort
    K. Baumann
    J.R. Graney
    M.S. Landis
    S. Berryman
    S. Krupa
    14.1 Introduction
    316(1)
    14.2 Materials and Methods
    317(4)
    14.2.1 Lichen Samples
    317(2)
    14.2.2 Sample Digestion
    319(1)
    14.2.3 Multielement Analysis via ICPMS
    319(2)
    14.3 Results and Discussion
    321(19)
    14.3.1 Detection Limits
    321(2)
    14.3.2 SRM Recoveries
    323(1)
    14.3.3 Lab Replicates
    324(2)
    14.3.4 Data Overview
    326(10)
    14.3.5 Comparison with H. physodes Data from Previous Studies
    336(4)
    14.4 Conclusions
    340(3)
    Acknowledgments
    341(1)
    References
    341(2)
    15 Coupling Lead Isotopes and Element Concentrations in Epiphytic Lichens to Track Sources of Air Emissions in the Athabasca Oil Sands Region
    343(30)
    J.R. Graney
    M.S. Landis
    S. Krupa
    15.1 Introduction
    344(2)
    15.2 Materials and Methods
    346(1)
    15.3 Results
    347(12)
    15.3.1 Theory for Using Pb Isotopes to Help Identify Sources
    347(1)
    15.3.2 Comparing Results from 2002 to 2008
    348(3)
    In Lichens
    351(1)
    15.3.4 Contouring Lichen Concentrations to Aid in Spatial Assessments
    352(6)
    15.3.5 Source Samples
    358(1)
    15.4 Discussion
    359(8)
    15.4.1 Other Studies That Document Emissions of Metals from Point Sources of Pollution in Canada
    359(1)
    15.4.2 Controls on Metal Concentrations and Accumulation by Lichens in the AOSR
    360(3)
    15.4.3 Other Work That Examined Pb Isotopes in Lichens
    363(3)
    15.4.4 Comparing Pb Isotope Ratios in Aerosols to those in Lichens from the AOSR
    366(1)
    15.5 Conclusions
    367(6)
    Acknowledgments
    368(1)
    References
    368(5)
    16 Mercury Concentration and Isotopic Composition of Epiphytic Tree Lichens in the Athabasca Oil Sands Region
    373(18)
    J.D. Blum
    M.W. Johnson
    J.D. Gleason
    J.D. Demers
    M.S. Landis
    S. Krupa
    16.1 Introduction
    374(2)
    16.2 Methods
    376(2)
    16.2.1 Sample Collection and Preparation
    376(1)
    16.2.2 Hg Concentration Analysis
    376(1)
    16.2.3 Sample Preparation for Isotope Analysis
    377(1)
    16.2.4 Mass Spectrometry
    377(1)
    16.2.5 Analytical Uncertainty
    378(1)
    16.3 Results and Discussion
    378(8)
    16.3.1 Hg Concentrations of H. physodes
    378(2)
    16.3.2 Hg Concentrations of Other Species of Epiphytic Lichens
    380(1)
    16.3.3 Spatial Variation in Hg Concentrations of H. physodes
    380(1)
    16.3.4 Hg Isotopic Composition of H. physodes
    381(3)
    16.3.5 Spatial Variation in Hg Isotopic Composition of H. physodes
    384(1)
    16.3.6 Hg Isotopic Composition of Oil Sands Materials
    384(2)
    16.4 Proposed Mechanism to Explain Hg Isotopic Variability
    386(1)
    16.5 Conclusions
    387(4)
    Acknowledgments
    388(1)
    References
    388(3)
    17 Measurement of Polynuclear Aromatic Hydrocarbons (PAHs) in Epiphytic Lichens for Receptor Modeling in the Athabasca Oil Sands Region (AOSR): A Pilot Study
    391(36)
    W.B. Studabaker
    S. Krupa
    R.K.M. Jayanty
    J.H. Raymer
    17.1 Introduction
    392(12)
    17.1.1 Lichens as Bioaccumulators of PAHs
    393(7)
    17.1.2 Factors Affecting Bioaccumulation of PAHs by Lichens
    400(1)
    17.1.3 Use of Lichens in Source Apportionment of PAHs
    401(3)
    17.1.4 Use of Lichens as Bioaccumulators in the AOSR
    404(1)
    17.2 Methods
    404(5)
    17.2.1 Sample Collection
    404(2)
    17.2.2 Sample Extraction and Cleanup
    406(1)
    17.2.3 GC-MS Analysis
    406(2)
    17.2.4 Quality Control
    408(1)
    17.2.5 Air Samples
    408(1)
    17.2.6 Statistical Analysis
    408(1)
    17.3 Results
    409(8)
    17.3.1 Method Development
    409(1)
    17.3.2 Sample Analyses
    410(7)
    17.4 Discussion
    417(2)
    17.4.1 Analytical Methodology
    417(1)
    17.4.2 Implications of the Current Study for Receptor Modeling
    418(1)
    17.5 Conclusions
    419(8)
    Acknowledgments
    421(1)
    References
    422(5)
    18 Receptor Modeling of Epiphytic Lichens to Elucidate the Sources and Spatial Distribution of Inorganic Air Pollution in the Athabasca Oil Sands Region
    427(42)
    M.S. Landis
    J.P. Pancras
    J.R. Graney
    R.K. Stevens
    K.E. Percy
    S. Krupa
    18.1 Introduction
    428(3)
    18.2 Methods
    431(8)
    18.2.1 Lichen Sampling and Analysis
    431(1)
    18.2.2 Source Sampling and Analysis
    431(1)
    18.2.3 Theory and Concepts of Source Apportionment and Receptor Models
    432(7)
    18.3 Results and Discussion
    439(23)
    18.3.1 AOSR Source Characterization
    439(1)
    18.3.2 Modeling Information
    440(7)
    18.3.3 PCA: Multilinear Regression
    447(3)
    18.3.4 Chemical Mass Balance
    450(3)
    18.3.5 PMF and Unmix Modeling
    453(9)
    18.4 Conclusions
    462(7)
    Acknowledgments
    464(1)
    References
    464(5)
    19 Concluding Remarks
    469(16)
    K.E. Percy
    S. Krupa
    19.1 Introduction
    469(2)
    19.2 Summary of Book Content
    471(6)
    19.3 Symposium Panel Discussion
    477(3)
    19.3.1 The Panel
    477(2)
    19.3.2 Discussion
    479(1)
    19.4 Future Perspectives
    480(5)
    References
    482(3)
    Index 485