Muutke küpsiste eelistusi

E-raamat: Algae Based Polymers, Blends, and Composites: Chemistry, Biotechnology and Materials Science

Edited by (Government College University, Faisalabad, Pakistan; Polymer chemistry, synthetic polymers functionalized by biopolymers, material sciences), Edited by , Edited by (MNS University of Engineering & Technology, Multan, Pakistan; Polymer synthesis, specialty p)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 19-Jun-2017
  • Kirjastus: Elsevier Science Publishing Co Inc
  • Keel: eng
  • ISBN-13: 9780128123614
  • Formaat - PDF+DRM
  • Hind: 218,40 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 19-Jun-2017
  • Kirjastus: Elsevier Science Publishing Co Inc
  • Keel: eng
  • ISBN-13: 9780128123614

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Algae Based Polymers, Blends, and Composites: Chemistry, Biotechnology and Material Sciences offers considerable detail on the origin of algae, extraction of useful metabolites and major compounds from algal bio-mass, and the production and future prospects of sustainable polymers derived from algae, blends of algae, and algae based composites. Characterization methods and processing techniques for algae-based polymers and composites are discussed in detail, enabling researchers to apply the latest techniques to their own work.

The conversion of bio-mass into high value chemicals, energy, and materials has ample financial and ecological importance, particularly in the era of declining petroleum reserves and global warming. Algae are an important source of biomass since they flourish rapidly and can be cultivated almost everywhere. At present the majority of naturally produced algal biomass is an unused resource and normally is left to decompose. Similarly, the use of this enormous underexploited biomass is mainly limited to food consumption and as bio-fertilizer. However, there is an opportunity here for materials scientists to explore its potential as a feedstock for the production of sustainable materials.

  • Provides detailed information on the extraction of useful compounds from algal biomass
  • Highlights the development of a range of polymers, blends, and composites
  • Includes coverage of characterization and processing techniques, enabling research scientists and engineers to apply the information to their own research and development
  • Discusses potential applications and future prospects of algae-based biopolymers, giving the latest insight into the future of these sustainable materials

Muu info

A complete resource for development of new polymers based on algal sources, covering extraction and production, processing, characterization, and applications
List of Contributors
xxi
About the Editors xxvii
Foreword xxix
Preface xxxi
Chapter 1 Algal-Based Biopolymers
1(32)
Muhammad Azeem
Fatima Batool
Naeem Iqbal
Ikram-ul-Haq
1.1 Introduction
1(1)
1.2 Application and Production of Bio-Based Polymers
2(17)
1.2.1 Application and Production of Bio-Based Polysaccharides
2(14)
1.2.2 Application and Production of Bio-Based Polyhydroxyalkanoates
16(1)
1.2.3 Application and Production of Bio-Based Proteins and Poly(Amino Acid)s
17(1)
1.2.4 Application and Production of Bio-Based Lignins
18(1)
1.2.5 Application and Production of Bio-Based Monomers
18(1)
1.3 Future Perspective
19(14)
References
20(13)
Chapter 2 Synthetic Materials and the Problems They Pose
33(22)
Mirza Nadeem Ahmad
Ameer Fawad Zahoor
Shahzad Ali Shahid Chatha
Abdullah Ijaz Hussain
Muhammad Asim Mansha
2.1 Introduction
33(1)
2.2 Plastic Debris
34(3)
2.2.1 Aesthetics
34(2)
2.2.2 Entanglement
36(1)
2.2.3 Ingestion of Plastics
36(1)
2.2.4 The Threats From Plastic Pollution to Marine Biota
36(1)
2.3 Impacts of Plastics on Agriculture
37(1)
2.4 Substitute of Plastic Bags
38(3)
2.4.1 Natural Fiber Bags
38(1)
2.4.2 Benefits and Advantages of Jute Bags
38(1)
2.4.3 Biodegradable Plastic Bags
39(2)
2.5 Pyrolysis
41(1)
2.6 Biodegradation of Thermoplastic Polyolefins
41(4)
2.6.1 Polyethylene
41(4)
2.7 Recycling of Polyethylene Terephthalate
45(2)
2.7.1 Solvent-Assisted Glycolysis
45(2)
2.7.2 Chemical Recycling of Polyethylene Terephthalate
47(1)
2.8 Recycling of Polyvinyl Chloride
47(4)
2.8.1 Chemical Recycling
48(2)
2.8.2 Polyvinyl Chloride to Fuel
50(1)
2.9 Conclusion and Future Prospects
51(4)
References
51(4)
Chapter 3 Microalgae: A Promising Feedstock for Energy and High-Value Products
55(22)
Ifrah Afzal
Ayesha Shahid
Muhammad Ibrahim
Tianzhong Liu
Muhammad Nawaz
Muhammad A. Mehmood
3.1 Microalgae: Potential and Properties
55(1)
3.2 Microalgae: Potential Feedstock for Bioenergy
56(8)
3.2.1 Bioalcohols
56(2)
3.2.2 Biodiesel
58(2)
3.2.3 Biogas
60(2)
3.2.4 Biohydrogen
62(1)
3.2.5 Advanced Biofuels
63(1)
3.3 Biological Pigments and Medicines
64(2)
3.4 Biochar Production
66(1)
3.5 Amino Acids and Poultry Feed
67(10)
References
68(9)
Chapter 4 Origin of Algae and Their Plastids
77(38)
Nadia Sharif
Neelma Munir
Shagufta Naz
Rehana Iqbal
Waqar Rauf
4.1 Introduction
77(1)
4.2 Evolution of Oxygenic Photosynthesis and Primary Endosymbiosis
78(3)
4.3 Secondary Endosymbiosis
81(4)
4.3.1 Euglenids
83(1)
4.3.2 Chlorarachniophytes
84(1)
4.3.3 Cryptomonads
84(1)
4.3.4 Haptophytes
84(1)
4.3.5 Heterokonts
84(1)
4.3.6 Dinoflagellates
85(1)
4.3.7 Apicomplexa
85(1)
4.4 Tertiary and Serial Secondary Endosymbiosis
85(1)
4.5 Apicomplexa and Dinoflagellates Plastids
86(2)
4.6 Characteristics and Properties of Algal Strains
88(7)
4.6.1 Types of Algae
88(7)
4.7 Metabolites From Algae
95(20)
4.7.1 Polysaccharides
95(1)
4.7.2 Phenolics and Phlorotannins
96(1)
4.7.3 Protein, Peptides, and Essential Amino Acids
96(1)
4.7.4 Lipids
97(3)
4.7.5 Terpenoids and Steroids
100(1)
4.7.6 Vitamins
101(1)
4.7.7 Minerals
101(1)
4.7.8 Common Algal Pigments
102(3)
4.7.9 Toxins
105(4)
4.7.10 Defense Chemicals
109(1)
References
110(5)
Chapter 5 Algal Polysaccharides, Novel Application, and Outlook
115(40)
Adil Usman
Sundas Khalid
Atif Usman
Zakir Hussain
Yanmei Wang
5.1 Introduction
115(3)
5.2 Alginates
118(4)
5.2.1 Chemical Structure
118(2)
5.2.2 Extraction Methods
120(1)
5.2.3 Biomedical Applications of Alginates
121(1)
5.3 Ulvan
122(3)
5.3.1 Chemical Structure of Ulvan
122(1)
5.3.2 Biomedical Applications of Ulvans
123(2)
5.4 Carrageenans
125(3)
5.4.1 Chemical Structure
126(1)
5.4.2 Biomedical Applications of Carrageenans
126(2)
5.5 Fucoidan
128(5)
5.5.1 Chemical Structure of Fucoidans
129(1)
5.5.2 Biomedical Applications of Fucoidans
129(4)
5.6 Laminarin
133(4)
5.6.1 Isolation, Source, and Occurrence
133(1)
5.6.2 Chemical Structure
133(1)
5.6.3 Extraction Methods
134(1)
5.6.4 Biomedical Applications
135(2)
5.7 Chitin/Chitosan
137(18)
5.7.1 Isolation, Source, and Occurrence
137(1)
5.7.2 Chemical Structure
138(1)
5.7.3 Extraction of Chitin
139(1)
5.7.4 Preparation of Chitosan
140(1)
5.7.5 Chitosan-Based Materials
141(1)
5.7.6 Applications in Food Biotechnology and Food Packaging
141(1)
5.7.7 Biomedical and Pharmaceutical Applications
141(2)
References
143(12)
Chapter 6 Algae-Based Biologically Active Compounds
155(118)
Muhammad Ibrahim
Mahwish Salman
Shagufta Kamal
Saima Rehman
Aneeza Razzaq
Sajid Hamid Akash
6.1 Introduction
155(1)
6.2 Occurrence
156(1)
6.3 General Characters of Algae
156(1)
6.4 Classification of Algae
156(4)
6.4.1 Chlorophyceae (Green Algae)
157(1)
6.4.2 Xanthophyceae (Yellow-Green Algae)
157(1)
6.4.3 Chrysophyceae (Golden Algae)
157(1)
6.4.4 Bacillariophyceae (Yellow or Golden-Brown Algae)
158(1)
6.4.5 Cryptophyceae
158(1)
6.4.6 Dinophyceae
158(1)
6.4.7 Chloromonadineae
158(1)
6.4.8 Euglenineae
158(1)
6.4.9 Phaeophyceae (Brown Algae)
159(1)
6.4.10 Myxophyceae (Cyanophyceae)
159(1)
6.4.11 Rhodophyceae (Red Algae)
159(1)
6.5 Biologically Active Compounds Extracted From Algae
160(50)
6.5.1 Sulfated Polysaccharides
160(1)
6.5.2 Polyphenolic Compounds
160(1)
6.5.3 Flavonoids
160(1)
6.5.4 Phlorotannins
160(5)
6.5.5 Terpenes and Terpenoids
165(1)
6.5.6 Phycobiliproteins
165(1)
6.5.7 Sterols
165(1)
6.5.8 Polyhydroxyalkonates
165(27)
6.5.9 Alkaloids
192(1)
6.5.10 Amino Acids
192(1)
6.5.11 Fatty Acids
192(1)
6.5.12 Hydrocarbons
192(1)
6.5.13 Oxygen Heterocycles
192(18)
6.5.14 Alcohols
210(1)
6.5.15 Lipids
210(1)
6.5.16 Carbonyl Compounds
210(1)
6.5.17 Others
210(1)
6.6 Therapeutic Applications of Algae
210(35)
6.6.1 Anticoagulant Activity
210(16)
6.6.2 Antiviral Activities of Algae-based Biologically Active Compounds
226(3)
6.6.3 Antioxidant Activity
229(1)
6.6.4 Anticancer Activity
230(2)
6.6.5 Antiinflammatory Activity
232(2)
6.6.6 Antiulcer Activity
234(1)
6.6.7 Antidiabetic Activity
234(1)
6.6.8 Antithrombin Activity
235(1)
6.6.9 Antiobesity Activity
235(1)
6.6.10 Antiangiogenic Activity
236(1)
6.6.11 Hepatoprotective Activity
236(1)
6.6.12 Radioprotective Effect
236(1)
6.6.13 Anti-Alzheimer Activity
237(2)
6.6.14 ACE Inhibition Activity
239(1)
6.6.15 Antituberculosis Activity
239(1)
6.6.16 Insecticidal Activity
239(1)
6.6.17 Hyaluronidase-Inhibition Activity
240(1)
6.6.18 Antifungal Activity
241(1)
6.6.19 Antimalarial Activity
241(1)
6.6.20 Antiglycemic and Antilipidemic Effects
242(1)
6.6.21 Antiallergy Activity
243(1)
6.6.22 Antifeedent Activity
244(1)
6.6.23 Antiadhesive Effect
244(1)
6.6.24 Biolubricating Agent
244(1)
6.6.25 Drag-Reducing Agents
245(1)
6.6.26 Other Applications
245(1)
6.7 Conclusion
245(28)
References
245(28)
Chapter 7 Production and Processing of Algal Biomass
273(28)
Ayesha Shahid
Aqib Zafar Khan
Tianzhong Liu
Sana Malik
Ifrah Afzal
Muhammad A. Mehmood
7.1 Nuts and Bolts of Algal Cultivation
273(2)
7.2 Algal Biomass Production Systems
275(4)
7.2.1 Open Pond Cultivation
275(1)
7.2.2 Closed Photobioreactor Systems
276(2)
7.2.3 Hybrid Cultivation System
278(1)
7.2.4 Heterotrophic Cultivation
278(1)
7.2.5 Mixotrophic Cultivation
279(1)
7.3 Algal Biomass Harvesting
279(7)
7.3.1 Flocculation
280(3)
7.3.2 Ultrasonic Aggregation
283(1)
7.3.3 Flotation
283(1)
7.3.4 Centrifugal Sedimentation
284(1)
7.3.5 Gravity Sedimentation
285(1)
7.3.6 Biomass Filtration
285(1)
7.4 Processing of Algal Biomass
286(15)
7.4.1 Dehydration
286(1)
7.4.2 Extraction and Purification of Lipids
287(2)
7.4.3 Extraction and Purification of Metabolites
289(3)
References
292(9)
Chapter 8 Algae Biotechnology: A Green Light for Engineered Algae
301(34)
Ijaz Rasul
Farrukh Azeem
Muhammad H. Siddique
Saima Muzammil
Azhar Rasul
Anam Munawar
Muhammad Afzal
Muhammad A. Ali
Habibullah Nadeem
8.1 Make Your Own Algal Bioplastic/Green Plastic
302(5)
8.1.1 Types of Algal Bioplastics
303(2)
8.1.2 Algae as Heterologous Expression System for the Production of Bioplastics
305(1)
8.1.3 Challenges for Bioplastics
306(1)
8.1.4 Future Prospects of Bioplastics
306(1)
8.2 Microalgae as a Source of Useful Compounds Other Than Biofuels
307(7)
8.2.1 Microalgae as Source of Bioactive Compounds
307(1)
8.2.2 Secondary Metabolites as Bioactive Compounds
308(5)
8.2.3 Microalgae for Human Health
313(1)
8.3 Engineering Algae to Make Wonder Material Nano-Cellulose for Biofuels
314(21)
8.3.1 Nano-Cellulose
315(1)
8.3.2 Bioethanol
316(1)
8.3.3 Ethanol-Producing Sugars in Macroalgae
316(1)
8.3.4 Preprocessing and Saccharification of Algal Biomass
317(2)
8.3.5 Fermentation
319(1)
8.3.6 Biodiesel
319(4)
8.3.7 Biogas
323(1)
8.3.8 Biohydrogen
324(1)
8.3.9 Economics of Biodiesel Production
324(1)
8.3.10 Enhancing Algal Biology
325(1)
8.3.11 Future Prospects
325(1)
8.3.12 Challenges and Hurdles
325(1)
References
326(8)
Further Reading
334(1)
Chapter 9 A Biorefinery Processing Perspective for the Production of Polymers
335(36)
Aqdas Noreen
Khalid M. Zia
Mudassir Jabeen
Shazia Tabasum
Fazal-ur-Rehman
Saima Rehman
Nadia Akram
Qun Wang
9.1 Introduction
335(1)
9.2 The Biorefinery Concept: Definition and Perspectives
336(6)
9.2.1 Biomass as Multiple Feedstock for Biorefinery
338(2)
9.2.2 Pretreatment and Fractionation of Biomass
340(2)
9.3 Types of Biorefineries
342(8)
9.3.1 Green Biorefinery
342(1)
9.3.2 The Forest and Lignocellulosic-Based Biorefinery
342(2)
9.3.3 Algae-Based Biorefinery
344(5)
9.3.4 Integrated Biorefinery
349(1)
9.4 Technological Conversion Processes in a Biorefinery
350(6)
9.4.1 Thermochemical Conversion Processes
352(2)
9.4.2 Biochemical Conversion Processes
354(1)
9.4.3 Mechanical Conversion Processes
355(1)
9.4.4 Chemical Conversion Processes
356(1)
9.5 Biorefinery Products
356(4)
9.5.1 Products Obtained From Conventional Chemical Methods
357(1)
9.5.2 Products Obtained From Fermentation
357(1)
9.5.3 Products Obtained From Ionic Liquid Phase Reaction
358(1)
9.5.4 Products Obtained From Direct Biological Conversion
359(1)
9.5.5 New Biorefinery Technologies and Products
360(1)
9.6 Conclusion
360(11)
References
361(10)
Chapter 10 Blends of Algae With Natural Polymers
371(44)
Shagufta Kamal
Maryam Rehman
Saima Rehman
Zill-i-Huma Nazli
Nazia Yaqoob
Razia Noreen
Saiqa Ikram
Ho S. Min
10.1 Introduction
371(2)
10.2 Methods of Blending
373(1)
10.2.1 Interpenetrating Polymer Network
373(1)
10.2.2 Melt Processed Blends
373(1)
10.2.3 Aqueous Blends
374(1)
10.2.4 Solution Blending
374(1)
10.3 Advantages of Blending
374(1)
10.4 Algal Polymers and Their Geographical Distribution
375(15)
10.4.1 Alginate
377(10)
10.4.2 Agar
387(3)
10.5 Biomedical and Pharmaceutical Applications of Algal Blends
390(11)
10.5.1 Control of Type-II Diabetes and Obesity
391(1)
10.5.2 Dental Impression
392(1)
10.5.3 Dura Mater Repair
392(1)
10.5.4 Mucoadhesion
392(2)
10.5.5 Wound Dressing
394(1)
10.5.6 Metal-Loaded Nanoparticles
395(1)
10.5.7 Biosensors
396(1)
10.5.8 Tissue Engineering
397(1)
10.5.9 Delivery Systems
398(3)
10.6 Environmental Applications
401(1)
10.6.1 Active Packaging
401(1)
10.6.2 Biodiesel and Bioethanol Production
401(1)
10.6.3 Ultra- and Nanofiltration
402(1)
10.7 Concluding Remarks
402(13)
References
403(10)
Further Reading
413(2)
Chapter 11 Algae-Based Polyurethane Blends and Composites
415(44)
Fatima Zia
Mehdi Barikani
Farukh Jabeen
Mohammad Zuber
Khalid M. Zia
Muhammad K. Khosa
Awais Khatri
11.1 Introduction
415(1)
11.2 Algae to Alginate
416(8)
11.2.1 Sources and Structural Chemistry of Alginate
416(3)
11.2.2 Properties of Alginates
419(1)
11.2.3 Extraction and Biosynthesis of Alginate
420(1)
11.2.4 Advancement in Applications of Alginate-Based Materials
421(3)
11.3 Polyurethanes---A Commercial Grade Class of Polymer
424(4)
11.3.1 Synthesis and Structural Chemistry of Polyurethane
424(2)
11.3.2 Miscellaneous Properties of Polyurethane
426(1)
11.3.3 Applications and Advancements of Polyurethanes
427(1)
11.4 Alginate-Based Polyurethane Materials
428(16)
11.4.1 Synthesis Strategy for Alg-PU Blends/Composites Materials
429(1)
11.4.2 Alg-PU-Based Blend or Hybrid Films/Coating Materials
429(3)
11.4.3 Alg-PU-Based Cross-Linked Hydrogel Materials
432(7)
11.4.4 Alg-PU Elastomeric Composites/Nanocomposites
439(5)
11.5 Summary
444(15)
References
445(14)
Chapter 12 Algae-Derived Polyester Blends and Composites
459(40)
Aqdas Noreen
Mudassir Jabeen
Shazia Tabasum
Anbreen Anjum
Rehana Naseer
Tomas J. Madera-Santana
Tayyaba Sultana
Salma Sultana
12.1 Introduction
459(1)
12.2 Algae as Alternative Biomaterial for Biobased Polyesters
460(3)
12.3 Poly-β-Hydroxybutyrate Production From Algae
463(2)
12.4 Synthesis of Algae-Derived Polyesters
465(4)
12.4.1 Algal Carbohydrate---Based Polyesters
465(2)
12.4.2 Algae Oil-Derived Polyesters
467(2)
12.5 Advancements in Algae-Based Polyesters and Their Novel Applications
469(16)
12.5.1 Algae-Derived Polyesters in Tissue Engineering
469(9)
12.5.2 Algae-Derived Polyesters in Wound Healing
478(1)
12.5.3 Algae-Derived Polyesters in Drug Delivery System
479(6)
12.6 Conclusion and Future Perspectives
485(14)
References
485(14)
Chapter 13 Algae-Based Polyolefins
499(32)
Mohammad Zuber
Khalid M. Zia
Aqdas Noreen
Shazia A. Bukhari
Nosheen Aslam
Neelam Sultan
Mudassir Jabeen
Bo Shi
13.1 Introduction
499(2)
13.2 Synthesis of Biobased Olefinic Monomers
501(4)
13.2.1 Bioethylene
501(1)
13.2.2 Biopropylene
502(1)
13.2.3 Bioisobutylene
502(2)
13.2.4 Bioisoprene
504(1)
13.2.5 Biobutadiene
504(1)
13.3 Fatty Acids---Based Polyolerins
505(1)
13.4 Vegetable Oil-Based Polyolefins
506(4)
13.5 Algal Polysaccharide/Polyolefin Biocomposites
510(4)
13.5.1 Agar/High Density Polyethylene Biocomposites
510(1)
13.5.2 Calcium Alginate/Linear LDPE Biocomposites
511(2)
13.5.3 Calcium Alginate/Polyacrylamide---Polypropylene / Fibronectin Biocomposites
513(1)
13.6 Seaweed Residue/Polyolefin Biocomposites
514(2)
13.6.1 High Density Polyethylene/Seaweed Residues Biocomposites
515(1)
13.6.2 Seaweed/Polypropylene Biocomposites
515(1)
13.7 Chlorella---Polyethylene Biocomposite
516(1)
13.8 Conclusion and Future Perspectives
517(14)
References
518(11)
Further Reading
529(2)
Chapter 14 Chlorella-Based Composites
531(34)
Takahiro Hirotsu
Toshi Otsuki
14.1 Introduction
531(1)
14.2 Feasibility of a Biological CO2 Fixation and Utilization System
532(2)
14.3 Characteristics of Chlorella Aggregates
534(4)
14.4 Chlorella Composite With Polyvinylchloride
538(5)
14.4.1 Optimum Molding Conditions
538(1)
14.4.2 Influence of Physical Properties of Chlorella
538(2)
14.4.3 Microstructure of PVC---CH Composite
540(1)
14.4.4 Effect of Chlorella Content on Tensile Strength
541(2)
14.5 Chlorella Composite With Polyethylene
543(8)
14.5.1 Modification of PE With MA by a Melt-Mixing Method
543(1)
14.5.2 Compounding of Chlorella With MPE by a Melt-Mixing Method
544(3)
14.5.3 Tensile Properties of MPE---CH Composite
547(4)
14.6 Chlorella Composite With Poly(propene)
551(11)
14.6.1 Solid-Phase Esterification Between Chlorella and MPP
552(3)
14.6.2 Changes in Crystallinity of the PP Matrices
555(1)
14.6.3 Phase Transitions of the PP Matrices
555(2)
14.6.4 Tensile Properties of the Composites
557(1)
14.6.5 Effects of the Esterification and the Crystallinity on the Tensile Properties
558(4)
14.7 Concluding Remarks
562(3)
Acknowledgments
562(1)
References
562(3)
Chapter 15 Alginate Blends of Polyvinyl alcohol) and Poly(N-vinyl-2-pyrrolidone) for Higher Physicomechanical Properties: Rationale of Making Heteropolymers
565(16)
Tuncer Caykara
Yasar Saleem
15.1 Alginate Blends With Poly(vinyl alcohol)
565(5)
15.2 Alginate Blends With Poly(N-vinyl-2-pyrrolidone)
570(3)
15.3 Surface Properties of Alginate Blends With PVA and PVP
573(8)
References
579(2)
Chapter 16 Alginate-Poly(Ethylene) Glycol and Poly(Ethylene) Oxide Blend Materials
581(22)
Fatima Zia
Muhammad N. Anjum
Muhammad J. Saif
Tahir Jamil
Kausar Malik
Shazia Anjum
Ismat BiBi
Muhammad A. Zia
16.1 Introduction
581(1)
16.2 Poly(Ethylene) Oxide and Poly(Ethylene) Glycol
582(1)
16.3 Alginate-Based Poly(Ethylene) Glycol Materials
583(6)
16.4 Alginate-Based Poly(Ethylene) Oxide Materials
589(4)
16.5 Some Alginate-PEO/PEG-Based Mixed Materials
593(1)
16.6 Conclusion
594(9)
References
594(9)
Chapter 17 Alginate-Based Hybrid Nanocomposite Materials
603(46)
Fatima Zia
Hadi Sobhani
Mohsen Mohammadi
Makshoof Athar
Muhammad Afzal
Tayyaba Sultana
Yury Shchipunov
17.1 Introduction
603(7)
17.1.1 Alginate (alg)
604(1)
17.1.2 Two-Dimensional Carbon Allotropes
605(4)
17.1.3 Titania Nanoparticles (TiO2 NPs)
609(1)
17.2 Graphene/Graphite---Alginate Nanocomposites
610(15)
17.2.1 Graphene---Alginate Adsorbents
613(5)
17.2.2 Graphene---Alginate Scaffolds
618(1)
17.2.3 Graphene---Alginate Membranes
618(3)
17.2.4 Graphene---Alginate Encapsulating System
621(1)
17.2.5 Graphene---Alginate Films for Electronics and Sensors
622(2)
17.2.6 Graphite---Alginate Conductive Composite
624(1)
17.2.7 Graphite---Alginate Adsorbent
624(1)
17.3 Titania---Alginate Hybrid Nanocomposites
625(6)
17.3.1 Titania---Alginate Adsorbent
625(2)
17.3.2 Titania----Alginate Coatings
627(1)
17.3.3 Titania---Alginate Encapsulation System
628(1)
17.3.4 Titania---Alginate Photocatalytic System
629(2)
17.3.5 Titania---Alginate Membrane
631(1)
17.4 Graphene and Titania-Based Alginate Mixed Matrix Materials
631(1)
17.5 Conclusion
632(17)
References
633(16)
Chapter 18 Characterization Techniques for Algae-Based Materials
649(22)
Yolanda Freile-Pelegrin
Tomas J. Madera-Santana
18.1 Seaweeds (Algae) Classification
649(1)
18.2 Special Polymers From Algae and Their Applications
649(3)
18.3 Polymers: Definitions and Classifications
652(1)
18.4 Processing of Composite Materials
653(1)
18.5 Polymer-Matrix Composites
653(1)
18.6 Bio-Based Composite Materials
654(1)
18.7 Optical and Morphological Properties
655(3)
18.7.1 Color Measurements
655(1)
18.7.2 Optical Microscopy
656(2)
18.7.3 Electron Microscopy
658(1)
18.8 Thermal Properties
658(4)
18.9 Mechanical Properties
662(2)
18.10 Structural Properties
664(4)
18.11 Conclusion
668(3)
References
668(3)
Chapter 19 Processing Techniques of Algae-Based Materials
671(16)
Shahzad Z. Iqbal
Fazal-ur-Rehman
Noeen Malik
Kanwal Rehman
Muhammad R. Asi
19.1 Processing of Biodiesel From Algae
671(1)
19.1.1 Introduction
671(1)
19.2 Processing Steps Involved for the Production of Biodiesel From Algae Wastewater
672(2)
19.2.1 Cultivation
672(1)
19.2.2 Harvesting
672(1)
19.2.3 Coagulation/Flocculation
672(1)
19.2.4 Flotation
673(1)
19.2.5 Sedimentation
673(1)
19.2.6 Immobilization
673(1)
19.2.7 Oil Extraction
673(1)
19.2.8 Chemical Solvent Extraction
673(1)
19.2.9 Homogemzation
673(1)
19.2.10 Sonincation
674(1)
19.2.11 Microwaving
674(1)
19.2.12 Autoclaving
674(1)
19.2.13 Pyrolysis
674(1)
19.2.14 Hydrothermal Carbonization
674(1)
19.2.15 Hydrothermal Liquefaction
674(1)
19.3 Pros and Cons of Economic and Energetic Evaluations of Algae Bioenergy
674(1)
19.4 Bioethanol Production From Algae
675(1)
19.5 Bioethanol an Ideal Source for Third Generation Produced From Algae
676(1)
19.6 Bioethanol as Renewable and Sustainable Biomass
677(1)
19.7 Processing Steps Involved During Production of Bioethanol From Algae
678(3)
19.7.1 Cultivation of Microalgae
678(1)
19.7.2 Photobioreactor
679(1)
19.7.3 Raceway Ponds
679(1)
19.7.4 Nonsuspended Method of Microalgae Cultivation
679(1)
19.7.5 Harvesting of Microalgae
680(1)
19.8 The Pros and Cons of Bioethanol Production From Brown-Algae Biomass
681(6)
References
682(5)
Chapter 20 Future Prospects of Algae-Based Materials
687(6)
Saima Rehman
Muhammad Ali
Mohammad Zuber
Khalid M. Zia
Rehana Iqbal
20.1 Introduction
687(1)
20.2 Algae-Based Polymers, Blends, and Composites and Their Applications
688(1)
20.3 Future Prospects of Algae-Based Materials
689(1)
20.4 Conclusion
690(3)
References
690(3)
Index 693
Associate Professor of Applied Chemistry, Government College University, Faisalabad, Pakistan Professor of Polymer Sciences, Vice Chancellor, MNS University of Engineering & Technology, Multan, Pakistan Yanbu University College Saudi Arabia and worked as Assistant Professor of Computer Information Science at Higher Colleges of Technology United Arab Emirates.