Muutke küpsiste eelistusi

E-raamat: Algebra: A Computational Introduction

(University of Toronto, Toronto, Canada)
  • Formaat - PDF+DRM
  • Hind: 156,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Introduces algebra for students in engineering, computer science, physical sciences, industry, and finance, and demonstrates how software can be used as a problem-solving tool for algebra. First introduces permutation groups and linear groups before tackling abstract groups, then goes on to cover Galois theory and Galois groups as symmetry groups. Mathematica is integrated throughout in examples and exercises. Mathematica notebooks and their equivalent Maple worksheets are available for downloading. The author teaches mathematics at the University of Toronto, Canada. Annotation c. Book News, Inc., Portland, OR (booknews.com)

Adequate texts that introduce the concepts of abstract algebra are plentiful. None, however, are more suited to those needing a mathematical background for careers in engineering, computer science, the physical sciences, industry, or finance than Algebra: A Computational Introduction. Along with a unique approach and presentation, the author demonstrates how software can be used as a problem-solving tool for algebra.

A variety of factors set this text apart. Its clear exposition, with each chapter building upon the previous ones, provides greater clarity for the reader. The author first introduces permutation groups, then linear groups, before finally tackling abstract groups. He carefully motivates Galois theory by introducing Galois groups as symmetry groups. He includes many computations, both as examples and as exercises. All of this works to better prepare readers for understanding the more abstract concepts.

By carefully integrating the use of Mathematica® throughout the book in examples and exercises, the author helps readers develop a deeper understanding and appreciation of the material. The numerous exercises and examples along with downloads available from the Internet help establish a valuable working knowledge of Mathematica and provide a good reference for complex problems encountered in the field.

Arvustused

" emphasizes the computational aspects of modern abstract algebraauthor has integrated the software Mathematica into the discussions-especially in the group theory sections-but is careful not to make any logical reliance on this software. For one wishing to see the theory unfold through a highly computational approach, this text has much to recommend writing is logical but not excessively formalI feel that this text was very courageously written[ the] focus is a bit more narrow that that of the typical first-year undergraduate course in abstract algebra. Yet, if one wishes to develop a deep and intuitive rapport with basic group and Galois theory, then this text has much to offer." --David B. Surowski, in Mathematical Reviews, Issue 2001i

Preface ix
Congruences
1(18)
Basic Properties
1(1)
Divisibility Tests
2(4)
Common Divisors
6(3)
Solving Congruences
9(2)
The Integers Modulo n
11(2)
Introduction to Software
13(2)
Exercises
15(4)
Permutations
19(8)
Permutations as Mappings
19(1)
Cycles
20(3)
Sign of a Permutation
23(1)
Exercises
24(3)
Permutation Groups
27(12)
Definition
27(2)
Cyclic Groups
29(1)
Generators
30(2)
Software and Calculations
32(4)
Exercises
36(3)
Linear Groups
39(12)
Definitions and Examples
39(2)
Generators
41(4)
Software and Calculations
45(3)
Exercises
48(3)
Groups
51(12)
Basic Properties and More Examples
51(5)
Homomorphisms
56(4)
Exercises
60(3)
Subgroups
63(12)
Definition
63(1)
Orthogonal Groups
63(2)
Cyclic Subgroups and Generators
65(5)
Kernel and Image of a Homomorphism
70(2)
Exercises
72(3)
Symmetry Groups
75(14)
Symmetries of Regular Polygons
76(2)
Symmetries of Platonic Solids
78(5)
Improper Symmetries
83(1)
Symmetries of Equations
84(3)
Exercises
87(2)
Group Actions
89(16)
Examples
89(1)
Orbits and Stabilizers
90(4)
Fractional Linear Transformations
94(3)
Cayley's Theorem
97(1)
Software and Calculations
98(4)
Exercises
102(3)
Counting Formulas
105(14)
The Class Equation
105(5)
A First Application
110(1)
Burnside's Counting Lemma
110(3)
Finite Subgroups of SO(3)
113(5)
Exercises
118(1)
Cosets
119(18)
Lagrange's Theorem
119(4)
Normal Subgroups
123(2)
Quotient Groups
125(1)
The Canonical Isomorphism
126(3)
Software and Calculations
129(5)
Exercises
134(3)
Sylow Subgroups
137(12)
The Sylow Theorems
137(4)
Groups of Small Order
141(4)
A List
145(1)
A Calculation
146(1)
Exercises
147(2)
Simple Groups
149(10)
Composition Series
149(2)
Simplicity of An
151(2)
Simplicity of PSL (2, Fp)
153(3)
Exercises
156(3)
Abelian Groups
159(18)
Free Abelian Groups
159(3)
Row and Column Reduction of Integer Matrices
162(4)
Classification Theorems
166(3)
Invariance of Elementary Divisors
169(3)
The Multiplicative Group of the Integers Mod n
172(2)
Exercises
174(3)
Polynomial Rings
177(32)
Basic Properties of Polynomials
178(5)
Unique Factorization into Irreducibles
183(2)
Finding Irreducible Polynomials
185(4)
Commutative Rings
189(3)
Congruences
192(5)
Factoring Polynomials over a Finite Field
197(4)
Calculations
201(4)
Exercises
205(4)
Symmetric Polynomials
209(12)
Polynomials in Several Variables
209(1)
Symmetric Polynomials and Functions
210(4)
Sums of Powers
214(1)
Discriminants
215(1)
Software
216(1)
Exercises
217(4)
Roots of Equations
221(24)
Introduction
221(2)
Extension Fields
223(2)
Degree of an Extension
225(3)
Splitting Fields
228(3)
Cubics
231(2)
Cyclotomic Polynomials
233(3)
Finite Fields
236(2)
Plots and Calculations
238(3)
Exercises
241(4)
Galois Groups
245(24)
Introduction
245(3)
Definition
248(2)
How Large is the Galois Group?
250(4)
The Galois Correspondence
254(11)
Discriminants
265(1)
Exercises
266(3)
Quartics
269(10)
Galois Groups of Quartics
269(3)
The Geometry of the Cubic Resolvent
272(3)
Software
275(1)
Exercises
276(3)
The General Equation of the nth Degree
279(6)
Examples
279(1)
Symmetric Functions
280(2)
The Fundamental Theorem of Algebra
282(1)
Exercises
283(2)
Solution by Radicals
285(12)
Formulas for a Cubic
285(3)
Cyclic Extensions
288(2)
Solution by Radicals in Higher Degrees
290(4)
Calculations
294(1)
Exercises
295(2)
Ruler-and-Compass Constructions
297(12)
Introduction
297(1)
Algebraic Interpretation
298(4)
Construction of Regular Polygons
302(2)
Periods
304(3)
Exercises
307(2)
Appendix: Mathematica Commands 309(4)
References 313(2)
Index 315


John Scherk