Muutke küpsiste eelistusi

E-raamat: Algebraic Number Theory: A Brief Introduction

  • Formaat: 166 pages
  • Sari: Textbooks in Mathematics
  • Ilmumisaeg: 21-Jul-2021
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781000402254
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 71,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 166 pages
  • Sari: Textbooks in Mathematics
  • Ilmumisaeg: 21-Jul-2021
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781000402254
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book offers the basics of algebraic number theory for students and others who need an introduction and do not have the time to wade through the voluminous textbooks available. It is suitable for an independent study or as a textbook for a first course on the topic.

The author presents the topic here by first offering a brief introduction to number theory and a review of the prerequisite material, then presents the basic theory of algebraic numbers. The treatment of the subject is classical but the newer approach discussed at the end provides a broader theory to include the arithmetic of algebraic curves over finite fields, and even suggests a theory for studying higher dimensional varieties over finite fields. It leads naturally to the Weil conjecture and some delicate questions in algebraic geometry.

About the Author

Dr. J. S. Chahal is a professor of mathematics at Brigham Young University. He received his Ph.D. from Johns Hopkins University and after spending a couple of years at the University of Wisconsin as a post doc, he joined Brigham Young University as an assistant professor and has been there ever since. He specializes and has published several papers in number theory. For hobbies, he likes to travel and hike. His book, Fundamentals of Linear Algebra, is also published by CRC Press.

Preface vii
1 Genesis: What Is Number Theory?
1(8)
1.1 What Is Number Theory?
1(3)
1.2 Methods of Proving Theorems in Number Theory
4(5)
2 Review of the Prerequisite Material
9(10)
2.1 Basic Concepts
9(3)
2.2 Galois Extensions
12(1)
2.3 Integral Domains
13(2)
2.4 Factoring Rational Primes in Z[ i]
15(4)
3 Basic Concepts
19(24)
3.1 Generalities
19(1)
3.2 Algebraic Integers
19(4)
3.3 Integral Bases
23(5)
3.4 Quadratic Fields
28(1)
3.5 Unique Factorization Property for Ideals
29(8)
3.6 Ideal Class Group and Class Number
37(6)
4 Arithmetic in Relative Extensions
43(14)
4.1 Criterion for Ramification
47(1)
4.2 Review of Commutative Algebra
48(2)
4.3 Relative Discriminant for Rings
50(1)
4.4 Direct Product of Rings
51(2)
4.5 Nilradical
53(1)
4.6 Reduced Rings
54(1)
4.7 Discriminant and Ramification
55(2)
5 Geometry of Numbers
57(16)
5.1 Lattices in Rn
57(2)
5.2 Minkowski's Lemma on Convex Bodies
59(1)
5.3 Logarithmic Embedding
60(6)
5.4 Units of a Quadratic Field
66(1)
5.5 Estimates on the Discriminant
66(7)
6 Analytic Methods
73(18)
6.1 Preliminaries
74(1)
6.2 The Regulator of a Number Field
74(2)
6.3 Fundamental Domains
76(9)
6.4 Zeta Functions
85(6)
6.4.1 The Riemann Zeta Function
85(1)
6.4.2 A Partial Zeta Function
86(2)
6.4.3 The Dedekind Zeta Function
88(3)
7 Arithmetic in Galois Extensions
91(18)
7.1 Hilbert Theory
92(3)
7.2 Higher Ramification Groups
95(4)
7.3 The Frobenius Map
99(2)
7.4 Ramification in Cyclic Extensions
101(2)
7.5 The Artin Symbol
103(2)
7.6 Quadratic Fields
105(1)
7.7 The Artin Map
106(3)
8 Cyclotomic Fields
109(14)
8.1 Cyclotomic Fields
109(10)
8.2 Arithmetic in Cyclotomic Fields
119(4)
9 The Kronecker-Weber Theorem
123(8)
9.1 Gauss Sums
123(2)
9.2 Proof of the Kronecker-Weber Theorem
125(6)
10 Passage to Algebraic Geometry
131(18)
10.1 Valuations
133(3)
10.2 Zeta Functions of Curves over Finite Fields
136(5)
10.3 Riemann Hypothesis for Elliptic Curves over Finite Fields
141(8)
11 Epilogue: Fermat's Last Theorem
149(2)
11.1 Fermat's Last Theorem
149(1)
11.2 An Alternative Approach to Proving FLT
150(1)
Bibliography 151(4)
Index 155
Dr. J.S. Chahal is a professor of mathematics at Brigham Young University at Provo in Utah. He received his Ph. D. from the Johns Hopkins University and after spending a couple of years at the University of Wisconsin as a post doc, he joined Brigham Young University as an assistant professor where he has been ever since. For hobbies, he likes to hike for which Utah is a great place, and travel.