Muutke küpsiste eelistusi

E-raamat: Algorithms and Applications for Academic Search, Recommendation and Quantitative Association Rule Mining

  • Formaat - PDF+DRM
  • Hind: 93,60 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Algorithms and Applications for Academic Search, Recommendation and Quantitative Association Rule Mining presents novel algorithms for academic search, recommendation and association rule mining that have been developed and optimized for different commercial as well as academic purpose systems. Along with the design and implementation of algorithms, a major part of the work presented in the book involves the development of new systems both for commercial as well as for academic use.

In the first part of the book the author introduces a novel hierarchical heuristic scheme for re-ranking academic publications retrieved from standard digital libraries. The scheme is based on the hierarchical combination of a custom implementation of the term frequency heuristic, a time-depreciated citation score and a graph-theoretic computed score that relates the paper's index terms with each other. In order to evaluate the performance of the introduced algorithms, a meta-search engine has been designed and developed that submits user queries to standard digital repositories of academic publications and re-ranks the top-n results using the introduced hierarchical heuristic scheme.

In the second part of the book the design of novel recommendation algorithms with application in different types of e-commerce systems are described. The newly introduced algorithms are a part of a developed Movie Recommendation system, the first such system to be commercially deployed in Greece by a major Triple Play services provider. The initial version of the system uses a novel hybrid recommender (user, item and content based) and provides daily recommendations to all active subscribers of the provider (currently more than 30,000). The recommenders that we are presenting are hybrid by nature, using an ensemble configuration of different content, user as well as item-based recommenders in order to provide more accurate recommendation results.

The final part of the book presents the design of a quantitative association rule mining algorithm. Quantitative association rules refer to a special type of association rules of the form that antecedent implies consequent consisting of a set of numerical or quantitative attributes. The introduced mining algorithm processes a specific number of user histories in order to generate a set of association rules with a minimally required support and confidence value. The generated rules show strong relationships that exist between the consequent and the antecedent of each rule, representing different items that have been consumed at specific price levels. This research book will be of appeal to researchers, graduate students, professionals, engineers and computer programmers.
Abstract ix
Acknowledgements xi
List of Figures
xiii
List of Tables
xvii
1
1(16)
1.1 Introduction
1(2)
1.2 Algorithmic Motivation and Objectives
3(2)
1.3 Related Work
5(6)
1.4 Algorithmic Challenges
11(6)
2 Academic Search Algorithms
17(36)
2.1 Collecting Data from Scientific Publications
17(1)
2.2 Topic Similarity Using Graphs
18(2)
2.2.1 Graph Construction
18(1)
2.2.2 Type I Graph
18(1)
2.2.3 Type II Graph
19(1)
2.3 Topic Similarity Using Graphs
20(1)
2.4 System Architecture
20(1)
2.5 Heuristic Hierarchy
21(8)
2.5.1 Term Frequency Heuristic
22(4)
2.5.2 Depreciated Citation Count Heuristic
26(2)
2.5.3 Maximal Weighted Cliques Heuristic
28(1)
2.6 Experiments' Design
29(3)
2.7 Experimental Results
32(21)
2.7.1 Comparisons with ACM Portal
33(1)
2.7.2 Comparison with other Heuristic Configurations
34(9)
2.7.3 Comparison with Other Academic Search Engines
43(6)
2.7.4 Can PubSearch Promote Good Publications "Buried" in ACM Portal Results?
49(3)
2.7.5 Run-time Overhead
52(1)
3 Recommender Systems
53(24)
3.1 System Architecture Overview
53(7)
3.1.1 AMORE Web Service
54(1)
3.1.2 AMORE Batch Process
55(5)
3.2 Recommender Ensemble
60(5)
3.2.1 Recommendation Approach
60(1)
3.2.2 Content-Based Recommender
60(2)
3.2.3 Item-Based Recommender
62(2)
3.2.4 User-Based Recommender
64(1)
3.2.5 Final Hybrid Parallel Recommender Ensemble
64(1)
3.2.6 Experiments with Other Base Recommender Algorithms
65(1)
3.3 Computational Results
65(9)
3.4 User and System Interfaces
74(3)
4 Quantitative Association Rules Mining
77(24)
4.1 Why Quantitative Association Rules?
77(1)
4.2 Algorithm Overview
78(1)
4.3 Algorithm Design
79(3)
4.4 Recommender Post-Processor
82(1)
4.4.1 Overview
82(1)
4.4.2 Post-Processing Algorithm
82(1)
4.5 Synthetic Dataset Generator
83(1)
4.6 Configuration Parameters
84(1)
4.7 Item Demand Elasticity
84(1)
4.8 Dataset Generation Process
84(4)
4.8.1 Generation Cycle
86(1)
4.8.2 Update Cycle
87(1)
4.9 Experimental Results
88(13)
4.9.1 Metric
88(1)
4.9.2 QARM Results Using Synthetically Generated Datasets
88(7)
4.9.3 QARM Results Using Movielens Dataset
95(1)
4.9.4 QARM Results Using Post-Processor
95(6)
5 Conclusions and Future Directions
101(4)
References 105(6)
Index 111(2)
About the Author 113
Emmanouil Amolochitis