Muutke küpsiste eelistusi

E-raamat: Algorithms and Architectures for Parallel Processing: 24th International Conference, ICA3PP 2024, Macau, China, October 29-31, 2024, Proceedings, Part V

Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 74,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The six-volume set, LNCS 15251-15256, constitutes the refereed proceedings of the 24th International Conference on Algorithms and Architectures for Parallel Processing, ICA3PP 2024, held in Macau, China, during October 2931, 2024.





The 91 full papers, 35 short papers and 5 workshop papers included in these proceedings were carefully reviewed and selected from 265 submissions. They focus on the many dimensions of parallel algorithms and architectures, encompassing fundamental theoretical approaches, practical experimental projects, and commercial components and systems.
An Enhanced Intrusion Detection Method Combined with Contrastive
Federated Learning.- Black-Box Adversarial Attack Against Transformer-Based
Object Detection Models in Vehicular Networks.- FedADDP: Privacy-Preserving
Personalized Federated Learning with Adaptive Dimensional Differential
Privacy.- DP-CLMI: Differentially Private Contrastive Learning against
Membership Inference Attack.- DT-UPD: User Privacy Data Protection through
Distribution Transformation in Unlearning Cloud Service.- Deduplication and
Approximate Analytics for Encrypted IoT Data in Fog-assisted Cloud
Storage.- Encrypted Malware Traffic Detection Via Time-Frequency Domain
Analysis.- Behavior-Driven Encrypted Malware Detection with Robust Traffic
Representation.- Optimizing Self-Training Sample Selection for Euphemism
Detection in Special Scenarios.- Modal-Centric Insights into Multimodal
Federated Learning for Smart Healthcare: A Survey.- Heterogeneous Graph
Modeling for Resource-Aware Prediction of DRL Training Time.- A Comprehensive
Review on Deep Learning System Testing.- CIGraph: Accelerating Graph Queries
Over Database with Compressed Index.- Language-based Colorization with Sparse
Attention and Multi-Scale Cross-Modal Semantic Alignment.- A Power Monitoring
Framework of a Post-Quantum Cryptography Web Server.- A Lightweight Detection
Scheme for Black-Hole Attacks and Gray-Hole Attacks in VANETs.- Federated
Meta Continual Learning for Efficient and Autonomous Edge
Inference.- Progressive Multiscale Attention Network for Diabetic
Retinopathy.- FPIM: Fair and Privacy-Preserving Incentive Mechanism in Mobile
Crowdsensing.- DRL-Based UAV Collaborative Task Offloading for Post-Disaster
Scenarios.- Who is being impersonated? Deepfake Audio Detection and
Impersonated Identification via Extraction of Id-specific Features.- Review
of Incentive Mechanisms of Differential Privacy based Federated Learning
Protocols: From the Economics and Game Theoretical Perspectives.