Muutke küpsiste eelistusi

E-raamat: Aligned Carbon Nanotubes: Physics, Concepts, Fabrication and Devices

  • Formaat: PDF+DRM
  • Sari: NanoScience and Technology
  • Ilmumisaeg: 05-Sep-2012
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783642304903
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: NanoScience and Technology
  • Ilmumisaeg: 05-Sep-2012
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783642304903

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book gives a survey of the physics and fabrication of carbon nanotubes and their applications in optics, electronics, chemistry and biotechnology. It focuses on the structural characterization of various carbon nanotubes, fabrication of vertically or parallel aligned carbon nanotubes on substrates or in composites, physical properties for their alignment, and applications of aligned carbon nanotubes in field emission, optical antennas, light transmission, solar cells, chemical devices, bio-devices, and many others. Major fabrication methods are illustrated in detail, particularly the most widely used PECVD growth technique on which various device integration schemes are based, followed by applications such as electrical interconnects, nanodiodes, optical antennas, and nanocoax solar cells, whereas current limitations and challenges are also be discussed to lay the foundation for future developments.

This book surveys the physics and fabrication of carbon nanotubes and their applications in optics, electronics, chemistry and biotechnology. The text illustrates major fabrication methods in detail, particularly the most widely used PECVD growth techniques.
1 Introduction to Carbon
1(6)
References
4(3)
2 Carbon Nanotubes
7(38)
2.1 History of Carbon Nanotubes
8(8)
2.1.1 History Before 1991
8(2)
2.1.2 History Since 1991
10(1)
2.1.3 History of Aligned Carbon Nanotubes
11(5)
2.2 Structures of Carbon Nanotubes
16(14)
2.2.1 Graphite
16(1)
2.2.2 Single-Walled Carbon Nanotubes
17(1)
2.2.3 Double-Walled Carbon Nanotubes
18(1)
2.2.4 Multi-Walled Carbon Nanotubes
19(1)
2.2.5 Bamboo-Like Carbon Nanotubes
19(1)
2.2.6 CNT Y-Junctions
20(1)
2.2.7 Carbon Nanobuds
21(2)
2.2.8 CNT Nanotorus and Micro-Rings
23(1)
2.2.9 Carbon Microtubes
24(1)
2.2.10 Amorphous Carbon Nanotubes
25(1)
2.2.11 Coiled Carbon Nanotubes
26(1)
2.2.12 Flattened Carbon Nanotubes
26(2)
2.2.13 Other Carbon Nanomaterials
28(2)
2.3 Physical Properties of Carbon Nanotubes
30(15)
2.3.1 Anisotropic Mechanical Properties
30(1)
2.3.2 Anisotropic Electrical Properties
30(1)
2.3.3 Anisotropic Thermal Conductivity
31(1)
2.3.4 Anisotropic Thermal Diffusivity
32(2)
2.3.5 Anisotropic Seebeck Coefficient
34(1)
2.3.6 Other Anisotropic Physical Properties
34(1)
References
35(10)
3 Growth Techniques of Carbon Nanotubes
45(22)
3.1 Arc Discharge
45(2)
3.2 Laser Ablation
47(1)
3.3 Chemical Vapor Deposition
48(4)
3.4 Hydro thermal Methods
52(4)
3.5 Flame Method
56(1)
3.6 Disproportionate of Carbon Monoxide
57(2)
3.7 Catalytic Pyrolysis of Hydrocarbons
59(1)
3.8 Electrolysis
59(1)
3.9 Solar Energy
60(7)
References
61(6)
4 Chemical Vapor Deposition of Carbon Nanotubes
67(26)
4.1 Thermal Chemical Vapor Deposition
67(8)
4.1.1 Hot-Wall Chemical Vapor Deposition
68(2)
4.1.2 Hot-Wire Chemical Vapor Deposition
70(1)
4.1.3 Thermal Chemical Vapor Deposition Growth Mechanism of Carbon Nanotubes
71(2)
4.1.4 Experimental Condition of Carbon Nanotube Array Growth
73(2)
4.2 Plasma-Enhanced Chemical Vapor Deposition
75(18)
4.2.1 Direct Current Plasma-Enhanced Chemical Vapor Deposition
76(2)
4.2.2 Radio-Frequency Plasma-Enhanced Chemical Vapor Deposition
78(1)
4.2.3 Microwave Plasma-Assisted Chemical Vapor Deposition
78(2)
4.2.4 Plasma-Enhanced Chemical Vapor Deposition Growth Mechanism of Carbon Nanotube Alignment
80(3)
4.2.5 Experimental Conditions of Plasma-Enhanced Chemical Vapor Deposition Growth
83(3)
References
86(7)
5 Physics of Direct Current Plasma-Enhanced Chemical Vapor Deposition
93(18)
5.1 Equipment Setup and Growth Procedure
93(2)
5.2 Substrate and Underlayer
95(1)
5.3 Growth Temperature
96(1)
5.4 Plasma Heating and Etching Effects
97(2)
5.5 Plasma States
99(1)
5.6 Catalyst Crystal Orientation
100(1)
5.7 Electric Field Manipulation
101(1)
5.8 DC-PECVD Growth Mechanism
102(9)
5.8.1 First Stage: Randomly Entangled CNT Growth
102(2)
5.8.2 Second Stage: Partially Aligned CNT Growth
104(1)
5.8.3 Third Stage: Fully Aligned CNT Growth
105(1)
5.8.4 DC-PECVD Growth Mechanism
106(1)
References
107(4)
6 Technologies to Achieve Carbon Nanotube Alignment
111(46)
6.1 In Situ Techniques for Carbon Nanotube Alignment
112(28)
6.1.1 Thermal Chemical Vapor Deposition with Crowding Effect
112(4)
6.1.2 Thermal Chemical Vapor Deposition Growth with Imposed Electric Field
116(3)
6.1.3 Thermal Chemical Vapor Deposition Growth Under Gas Flow Fields
119(4)
6.1.4 Thermal Chemical Vapor Deposition Growth with Epitaxy
123(5)
6.1.5 Thermal Chemical Vapor Deposition Under Magnetic Fields
128(1)
6.1.6 Vertically Aligned Carbon Nanotube Arrays Grown by Plasma-Enhanced Chemical Vapor Deposition
128(12)
6.1.7 Other In Situ techniques
140(1)
6.2 Ex Situ Techniques for Carbon Nanotube Alignment
140(17)
6.2.1 Ex Situ Alignment Under Electric Fields
141(1)
6.2.2 Ex Situ Alignment Under Magnetic Fields
141(2)
6.2.3 Ex Situ Mechanical Methods
143(4)
6.2.4 Other Ex Situ Methods
147(1)
References
147(10)
7 Measurement Techniques of Aligned Carbon Nanotubes
157(26)
7.1 Scanning Electron Microscopy
157(3)
7.2 Bragg Diffraction
160(8)
7.2.1 X-Ray Diffraction
160(4)
7.2.2 Neutron Diffraction
164(1)
7.2.3 Electron Diffraction
164(2)
7.2.4 Light Diffraction
166(2)
7.3 Small-Angle Scattering
168(5)
7.3.1 Small-Angle X-Ray Scattering
168(4)
7.3.2 Small-Angle Neutron Scattering
172(1)
7.4 Raman Spectroscopy
173(3)
7.5 Transmission Electron Microscopy
176(2)
7.6 Scanning Tunneling Microscopy
178(1)
7.7 Atomic Force Microscopy
179(1)
7.8 Other Techniques
179(4)
References
180(3)
8 Properties and Applications of Aligned Carbon Nanotube Arrays
183(72)
8.1 Field Emission Devices
183(15)
8.1.1 Field Emission of Aligned Carbon Nanotube Arrays
184(3)
8.1.2 Carbon Nanotube Array Emitters
187(1)
8.1.3 High-Intensity Electron Sources
188(1)
8.1.4 Lighting
189(2)
8.1.5 Field Emission Flat Panel Displays
191(2)
8.1.6 Incandescent Displays
193(1)
8.1.7 X-Ray Generators
194(1)
8.1.8 Microwave Devices
195(2)
8.1.9 Other Field Emission Devices
197(1)
8.2 Optical Devices
198(10)
8.2.1 Photonic Crystals
198(1)
8.2.2 Optical Antennae
199(3)
8.2.3 Optical Waveguides
202(2)
8.2.4 SWCNT Array Solar Cells
204(1)
8.2.5 Solar Cells Based on MWCNT Nanocoaxes
204(4)
8.3 Nanoelectrode-Based Sensors
208(20)
8.3.1 Nanoelectrode Arrays
208(5)
8.3.2 Ion Sensors
213(2)
8.3.3 Gas Sensors
215(7)
8.3.4 Biosensors
222(6)
8.4 Thermal Devices: Thermal Interface Materials
228(3)
8.5 Electrical Interconnects and Vias
231(4)
8.6 Templates
235(1)
8.7 Aligned-CNT Composites and Applications
236(19)
References
236(19)
9 Potential Applications of Carbon Nanotube Arrays
255(36)
9.1 Mechanical Devices
255(8)
9.1.1 Carbon Nanotube Ropes
256(3)
9.1.2 TEM Grids
259(1)
9.1.3 Artificial Setae
260(1)
9.1.4 Piezoresistive Effects: Pressure and Strain Sensors
260(3)
9.2 Electrical Devices
263(2)
9.2.1 Random Access Memory
263(1)
9.2.2 Low k Dielectrics
264(1)
9.2.3 Transistors
265(1)
9.3 Acoustic Sensors
265(4)
9.3.1 Artificial Ears
265(1)
9.3.2 Thermoacoustic Loudspeakers
265(4)
9.4 Electrochemical and Chemical Storage Devices
269(11)
9.4.1 Fuel Cells
270(4)
9.4.2 Supercapacitors
274(5)
9.4.3 Lithium Ion Batteries
279(1)
9.4.4 Hydrogen Storage
280(1)
9.5 Electromechanical Devices: Actuators
280(1)
9.6 Terahertz Sources
281(1)
9.7 Other Applications
282(9)
References
283(8)
Epilogue 291(2)
Index 293