|
|
1 | (6) |
|
|
4 | (3) |
|
|
7 | (38) |
|
2.1 History of Carbon Nanotubes |
|
|
8 | (8) |
|
2.1.1 History Before 1991 |
|
|
8 | (2) |
|
|
10 | (1) |
|
2.1.3 History of Aligned Carbon Nanotubes |
|
|
11 | (5) |
|
2.2 Structures of Carbon Nanotubes |
|
|
16 | (14) |
|
|
16 | (1) |
|
2.2.2 Single-Walled Carbon Nanotubes |
|
|
17 | (1) |
|
2.2.3 Double-Walled Carbon Nanotubes |
|
|
18 | (1) |
|
2.2.4 Multi-Walled Carbon Nanotubes |
|
|
19 | (1) |
|
2.2.5 Bamboo-Like Carbon Nanotubes |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
21 | (2) |
|
2.2.8 CNT Nanotorus and Micro-Rings |
|
|
23 | (1) |
|
|
24 | (1) |
|
2.2.10 Amorphous Carbon Nanotubes |
|
|
25 | (1) |
|
2.2.11 Coiled Carbon Nanotubes |
|
|
26 | (1) |
|
2.2.12 Flattened Carbon Nanotubes |
|
|
26 | (2) |
|
2.2.13 Other Carbon Nanomaterials |
|
|
28 | (2) |
|
2.3 Physical Properties of Carbon Nanotubes |
|
|
30 | (15) |
|
2.3.1 Anisotropic Mechanical Properties |
|
|
30 | (1) |
|
2.3.2 Anisotropic Electrical Properties |
|
|
30 | (1) |
|
2.3.3 Anisotropic Thermal Conductivity |
|
|
31 | (1) |
|
2.3.4 Anisotropic Thermal Diffusivity |
|
|
32 | (2) |
|
2.3.5 Anisotropic Seebeck Coefficient |
|
|
34 | (1) |
|
2.3.6 Other Anisotropic Physical Properties |
|
|
34 | (1) |
|
|
35 | (10) |
|
3 Growth Techniques of Carbon Nanotubes |
|
|
45 | (22) |
|
|
45 | (2) |
|
|
47 | (1) |
|
3.3 Chemical Vapor Deposition |
|
|
48 | (4) |
|
3.4 Hydro thermal Methods |
|
|
52 | (4) |
|
|
56 | (1) |
|
3.6 Disproportionate of Carbon Monoxide |
|
|
57 | (2) |
|
3.7 Catalytic Pyrolysis of Hydrocarbons |
|
|
59 | (1) |
|
|
59 | (1) |
|
|
60 | (7) |
|
|
61 | (6) |
|
4 Chemical Vapor Deposition of Carbon Nanotubes |
|
|
67 | (26) |
|
4.1 Thermal Chemical Vapor Deposition |
|
|
67 | (8) |
|
4.1.1 Hot-Wall Chemical Vapor Deposition |
|
|
68 | (2) |
|
4.1.2 Hot-Wire Chemical Vapor Deposition |
|
|
70 | (1) |
|
4.1.3 Thermal Chemical Vapor Deposition Growth Mechanism of Carbon Nanotubes |
|
|
71 | (2) |
|
4.1.4 Experimental Condition of Carbon Nanotube Array Growth |
|
|
73 | (2) |
|
4.2 Plasma-Enhanced Chemical Vapor Deposition |
|
|
75 | (18) |
|
4.2.1 Direct Current Plasma-Enhanced Chemical Vapor Deposition |
|
|
76 | (2) |
|
4.2.2 Radio-Frequency Plasma-Enhanced Chemical Vapor Deposition |
|
|
78 | (1) |
|
4.2.3 Microwave Plasma-Assisted Chemical Vapor Deposition |
|
|
78 | (2) |
|
4.2.4 Plasma-Enhanced Chemical Vapor Deposition Growth Mechanism of Carbon Nanotube Alignment |
|
|
80 | (3) |
|
4.2.5 Experimental Conditions of Plasma-Enhanced Chemical Vapor Deposition Growth |
|
|
83 | (3) |
|
|
86 | (7) |
|
5 Physics of Direct Current Plasma-Enhanced Chemical Vapor Deposition |
|
|
93 | (18) |
|
5.1 Equipment Setup and Growth Procedure |
|
|
93 | (2) |
|
5.2 Substrate and Underlayer |
|
|
95 | (1) |
|
|
96 | (1) |
|
5.4 Plasma Heating and Etching Effects |
|
|
97 | (2) |
|
|
99 | (1) |
|
5.6 Catalyst Crystal Orientation |
|
|
100 | (1) |
|
5.7 Electric Field Manipulation |
|
|
101 | (1) |
|
5.8 DC-PECVD Growth Mechanism |
|
|
102 | (9) |
|
5.8.1 First Stage: Randomly Entangled CNT Growth |
|
|
102 | (2) |
|
5.8.2 Second Stage: Partially Aligned CNT Growth |
|
|
104 | (1) |
|
5.8.3 Third Stage: Fully Aligned CNT Growth |
|
|
105 | (1) |
|
5.8.4 DC-PECVD Growth Mechanism |
|
|
106 | (1) |
|
|
107 | (4) |
|
6 Technologies to Achieve Carbon Nanotube Alignment |
|
|
111 | (46) |
|
6.1 In Situ Techniques for Carbon Nanotube Alignment |
|
|
112 | (28) |
|
6.1.1 Thermal Chemical Vapor Deposition with Crowding Effect |
|
|
112 | (4) |
|
6.1.2 Thermal Chemical Vapor Deposition Growth with Imposed Electric Field |
|
|
116 | (3) |
|
6.1.3 Thermal Chemical Vapor Deposition Growth Under Gas Flow Fields |
|
|
119 | (4) |
|
6.1.4 Thermal Chemical Vapor Deposition Growth with Epitaxy |
|
|
123 | (5) |
|
6.1.5 Thermal Chemical Vapor Deposition Under Magnetic Fields |
|
|
128 | (1) |
|
6.1.6 Vertically Aligned Carbon Nanotube Arrays Grown by Plasma-Enhanced Chemical Vapor Deposition |
|
|
128 | (12) |
|
6.1.7 Other In Situ techniques |
|
|
140 | (1) |
|
6.2 Ex Situ Techniques for Carbon Nanotube Alignment |
|
|
140 | (17) |
|
6.2.1 Ex Situ Alignment Under Electric Fields |
|
|
141 | (1) |
|
6.2.2 Ex Situ Alignment Under Magnetic Fields |
|
|
141 | (2) |
|
6.2.3 Ex Situ Mechanical Methods |
|
|
143 | (4) |
|
6.2.4 Other Ex Situ Methods |
|
|
147 | (1) |
|
|
147 | (10) |
|
7 Measurement Techniques of Aligned Carbon Nanotubes |
|
|
157 | (26) |
|
7.1 Scanning Electron Microscopy |
|
|
157 | (3) |
|
|
160 | (8) |
|
|
160 | (4) |
|
7.2.2 Neutron Diffraction |
|
|
164 | (1) |
|
7.2.3 Electron Diffraction |
|
|
164 | (2) |
|
|
166 | (2) |
|
7.3 Small-Angle Scattering |
|
|
168 | (5) |
|
7.3.1 Small-Angle X-Ray Scattering |
|
|
168 | (4) |
|
7.3.2 Small-Angle Neutron Scattering |
|
|
172 | (1) |
|
|
173 | (3) |
|
7.5 Transmission Electron Microscopy |
|
|
176 | (2) |
|
7.6 Scanning Tunneling Microscopy |
|
|
178 | (1) |
|
7.7 Atomic Force Microscopy |
|
|
179 | (1) |
|
|
179 | (4) |
|
|
180 | (3) |
|
8 Properties and Applications of Aligned Carbon Nanotube Arrays |
|
|
183 | (72) |
|
8.1 Field Emission Devices |
|
|
183 | (15) |
|
8.1.1 Field Emission of Aligned Carbon Nanotube Arrays |
|
|
184 | (3) |
|
8.1.2 Carbon Nanotube Array Emitters |
|
|
187 | (1) |
|
8.1.3 High-Intensity Electron Sources |
|
|
188 | (1) |
|
|
189 | (2) |
|
8.1.5 Field Emission Flat Panel Displays |
|
|
191 | (2) |
|
8.1.6 Incandescent Displays |
|
|
193 | (1) |
|
|
194 | (1) |
|
|
195 | (2) |
|
8.1.9 Other Field Emission Devices |
|
|
197 | (1) |
|
|
198 | (10) |
|
|
198 | (1) |
|
|
199 | (3) |
|
|
202 | (2) |
|
8.2.4 SWCNT Array Solar Cells |
|
|
204 | (1) |
|
8.2.5 Solar Cells Based on MWCNT Nanocoaxes |
|
|
204 | (4) |
|
8.3 Nanoelectrode-Based Sensors |
|
|
208 | (20) |
|
8.3.1 Nanoelectrode Arrays |
|
|
208 | (5) |
|
|
213 | (2) |
|
|
215 | (7) |
|
|
222 | (6) |
|
8.4 Thermal Devices: Thermal Interface Materials |
|
|
228 | (3) |
|
8.5 Electrical Interconnects and Vias |
|
|
231 | (4) |
|
|
235 | (1) |
|
8.7 Aligned-CNT Composites and Applications |
|
|
236 | (19) |
|
|
236 | (19) |
|
9 Potential Applications of Carbon Nanotube Arrays |
|
|
255 | (36) |
|
|
255 | (8) |
|
9.1.1 Carbon Nanotube Ropes |
|
|
256 | (3) |
|
|
259 | (1) |
|
|
260 | (1) |
|
9.1.4 Piezoresistive Effects: Pressure and Strain Sensors |
|
|
260 | (3) |
|
|
263 | (2) |
|
9.2.1 Random Access Memory |
|
|
263 | (1) |
|
|
264 | (1) |
|
|
265 | (1) |
|
|
265 | (4) |
|
|
265 | (1) |
|
9.3.2 Thermoacoustic Loudspeakers |
|
|
265 | (4) |
|
9.4 Electrochemical and Chemical Storage Devices |
|
|
269 | (11) |
|
|
270 | (4) |
|
|
274 | (5) |
|
9.4.3 Lithium Ion Batteries |
|
|
279 | (1) |
|
|
280 | (1) |
|
9.5 Electromechanical Devices: Actuators |
|
|
280 | (1) |
|
|
281 | (1) |
|
|
282 | (9) |
|
|
283 | (8) |
Epilogue |
|
291 | (2) |
Index |
|
293 | |