Muutke küpsiste eelistusi

E-raamat: Alternative Energy Sources

  • Formaat: PDF+DRM
  • Sari: Green Energy and Technology
  • Ilmumisaeg: 15-Jan-2012
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783642209512
  • Formaat - PDF+DRM
  • Hind: 86,44 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Green Energy and Technology
  • Ilmumisaeg: 15-Jan-2012
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783642209512

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Alternative Energy Sources is designed to give the reader, a clear view of the role each form of alternative energy may play in supplying the energy needs of the human society in the near future (20-50 years).The two first chapters on "energy demand and supply" and "environmental effects," set the tone as to why alternative energy is essential for the future. The third chapter gives the laws of energy conversion processes, as well as the limitations of converting one energy form to another. The section on exergy gives a quantitative background on the capability/potential of each energy source to produce power. The fourth, fifth and sixth chapters are expositions of fission and fusion nuclear energy, the power plants that may produce power from these sources and the issues that will frame the public debate on nuclear energy. The following five chapters include descriptions of the most common renewable energy sources (wind, solar, geothermal, biomass, hydroelectric) some of the less common sources (e.g. tidal and wave energy). The emphasis of these chapters will be on the global potential of each source, the engineering/technical systems that are used in harnessing the potential of each source, the technological developments that will contribute to wider utilization of the sources and environmental effects associated with their wider use. The last three chapters are: "energy storage," which will become an important issue if renewable energy sources are used widely.The fourteen chapters in the book have been chosen so that one may fit a semester University course around this book. At the end of every chapter, there are 10-20 problems and 1-3 suggestions of semester projects that may be assigned to students for further research.

This book offers a clear view of the role each form of alternative energy may play in supplying energy needs in the near future. It details the most common renewable energy sources as well as examines nuclear energy by fission and fusion energy.
1 Energy Demand and Supply
1(32)
1.1 Forms and Units of Work, Heat and Energy
2(4)
1.1.1 Units of Energy
3(3)
1.2 Energy Demand and Supply
6(15)
1.2.1 Energy Demand
7(6)
1.2.2 Energy Supply
13(4)
1.2.3 Energy Prices, OPEC and Politics
17(4)
1.3 Reserves, Resources and Future Demand for Energy
21(9)
1.3.1 Energy Reserves and Resources
23(2)
1.3.2 The Finite Life of a Resource
25(1)
1.3.3 The Hubbert Curve and the Hubbert Peak
26(4)
1.4 Concluding Remarks
30(2)
References
32(1)
2 Environmental and Ecological Effects of Energy Production and Consumption
33(32)
2.1 Environment, Ecology and Ecosystems
34(1)
2.2 Global Climate Change
35(12)
2.2.1 The Energy Balance of the Earth
36(2)
2.2.2 The Greenhouse Effect
38(2)
2.2.3 Major Consequences of the Greenhouse Effect
40(2)
2.2.4 Remedial Actions for Global Warming
42(3)
2.2.5 The Failure of the Copenhagen Summit
45(2)
2.3 Acid Rain
47(4)
2.4 Lead Abatement
51(2)
2.5 Thermal Pollution and Fresh-Water Use
53(2)
2.6 Nuclear Waste
55(4)
2.6.1 Initial Treatment of the Waste
57(1)
2.6.2 Long-Term Disposal
58(1)
2.7 Sustainable Development
59(4)
Reference
63(2)
3 Fundamentals of Energy Conversion
65(34)
3.1 Origins of Thermodynamics and Historical Context
65(3)
3.2 Fundamental Concepts of Thermodynamics
68(2)
3.3 Work, Heat and Energy
70(2)
3.3.1 Work
70(1)
3.3.2 Heat
71(1)
3.3.3 Sign Convention
72(1)
3.4 The First Law of Thermodynamics: Energy Balance
72(6)
3.4.1 Closed Systems
73(1)
3.4.2 Cyclic Systems
74(1)
3.4.3 Open Systems
75(3)
3.5 The Second Law of Thermodynamics
78(3)
3.5.1 Implications of the Second Law on Energy Conversion Systems and Processes
80(1)
3.6 Thermal Power Plants
81(8)
3.6.1 Vapor Power Cycles: The Rankine Cycle
82(2)
3.6.2 Gas Cycles: The Brayton Cycle
84(3)
3.6.3 Refrigeration and Heat Pump Cycles
87(2)
3.7 Exergy: Availability
89(8)
3.7.1 Geothermal Energy Resources
90(1)
3.7.2 Fossil-Fuel Resources
91(2)
3.7.3 Radiation: The Sun as Energy Resource
93(1)
3.7.4 Second Law Efficiency: Utilization Factor
94(3)
References
97(2)
4 Introduction to Nuclear Energy
99(32)
4.1 Elements of Atomic and Nuclear Physics
100(10)
4.1.1 Atoms and Nuclei: Basic Definitions
100(2)
4.1.2 Atomic Mass, Mass Defect and Binding Energy
102(1)
4.1.3 Nuclear Reactions and Energy Released
103(2)
4.1.4 Radioactivity
105(2)
4.1.5 Rate of Radioactive Decay: Half Life
107(3)
4.2 Nuclear Fission
110(13)
4.2.1 Interactions of Neutrons with Nuclei
111(2)
4.2.2 Cross Sections of Common Nuclei
113(1)
4.2.3 Neutron Energies: Thermal Neutrons
114(3)
4.2.4 The Chain Reaction: Probability of Fission
117(4)
4.2.5 The Moderation Process and Common Moderators
121(1)
4.2.6 Fission Products and Energy Released in Chain Reactions
122(1)
4.3 Conversion and Breeding Reactions
123(3)
4.4 Useful Calculations and Numbers for Electric Power Generation
126(3)
References
129(2)
5 Nuclear Power Plants
131(42)
5.1 Basic Components of a Thermal Nuclear Power Plant
131(8)
5.1.1 The Reactor Fuel
132(2)
5.1.2 The Fuel Moderator
134(2)
5.1.3 The Reactor Coolant
136(1)
5.1.4 The Control Systems
136(2)
5.1.5 The Shield
138(1)
5.2 Nuclear Reactor Types and Power Plants
139(9)
5.2.1 The Pressurized Water Reactor (PWR)
140(3)
5.2.2 Boiling Water Reactor (BWR)
143(1)
5.2.3 The CANDU Reactor
144(1)
5.2.4 The Gas Cooled Reactors (GCR)
145(2)
5.2.5 Other Reactors
147(1)
5.3 Cooling of Nuclear Reactors
148(10)
5.3.1 Accidents in Nuclear Power Plants: Three-Mile Island, Chernobyl and Fukushima Dai-ichi
149(1)
5.3.2 The Accident at the Three-Mile Island
149(3)
5.3.3 The Accident at Chernobyl
152(5)
5.3.4 The Accident at Fukushima Dai-ichi
157(1)
5.4 Environmental, Safety and Societal Issues for Thermal Nuclear Reactors
158(3)
5.5 Breeder Reactors
161(4)
5.5.1 Fast Breeder Power Plants
164(1)
5.6 The Future of Nuclear Energy: To Breed or Not to Breed?
165(7)
References
172(1)
6 Fusion Energy
173(22)
6.1 The Energy of the Stars
173(3)
6.2 Man-Made Fusion
176(10)
6.2.1 The Paths to Form Helium-4
177(1)
6.2.2 The Deuterium--Tritium (DT) Fusion Reaction
178(3)
6.2.3 Magnetic and Inertial Confinement of Plasma
181(5)
6.3 A Fusion Electric Power Plant
186(2)
6.4 Environmental Considerations
188(1)
6.5 "Cold Fusion," Other Myths and Scientific Ethics
189(5)
6.5.1 Muon Atomic Fusion
189(1)
6.5.2 Sonoluminescence
189(1)
6.5.3 Cold Fusion in a Test-Tube
190(2)
6.5.4 Ethical Lessons from the "Cold Fusion" Debacle
192(2)
References
194(1)
7 Solar Energy
195(36)
7.1 Earth-Sun Mechanics and Solar Radiation
196(7)
7.1.1 Solar Spectrum and Insolation on a Terrestrial Surface
198(4)
7.1.2 Average Annual Solar Power: Solar Energy Potential
202(1)
7.2 Solar-Thermal Systems
203(16)
7.2.1 Power Cycles
204(3)
7.2.2 Solar Reflectors and Heliostats
207(2)
7.2.3 Energy Losses and Thermal Power Plant Operation
209(5)
7.2.4 Solar Ponds
214(2)
7.2.5 Passive Solar Heating: Solar Collectors
216(3)
7.3 Direct Solar-Electric Energy Conversion: Photovoltaics
219(8)
7.3.1 Band Theory of Electrons
219(2)
7.3.2 Solar Cells and Direct Energy Conversion
221(2)
7.3.3 Efficiency of Solar Cells
223(3)
7.3.4 A Futuristic Concept: The Space Solar Power Station
226(1)
7.4 Environmental Issues of Solar Energy Utilization
227(4)
8 Wind Power
231(26)
8.1 Wind Patterns
231(5)
8.1.1 Early Types of Wind Utilization
233(2)
8.1.2 Wind Power Potential
235(1)
8.2 Principles of Wind Power
236(10)
8.2.1 Spatial and Temporal Characteristics of Wind: The Boundary Layer and Exceedance Curves
237(3)
8.2.2 Probability Distributions of Wind Speed and Wind Power
240(1)
8.2.3 Fundamentals of Wind Power Generation
241(4)
8.2.4 Efficiency of Actual Wind Turbines
245(1)
8.3 Power Generation Systems: Parts of Common Wind Turbines
246(7)
8.3.1 Smaller Wind Turbines
249(1)
8.3.2 Other Wind Power Systems
250(2)
8.3.3 The Future of Wind Power
252(1)
8.4 Environmental Effects
253(4)
9 Geothermal Energy
257(30)
9.1 Introduction
257(6)
9.1.1 Geothermal Resources
261(2)
9.2 Geothermal Power Plants
263(11)
9.2.1 Dry Steam Units
264(1)
9.2.2 Single-Flashing Units
265(2)
9.2.3 Dual Flashing Units
267(1)
9.2.4 Several Flashing Processes: A Useful Theoretical Exercise
268(3)
9.2.5 Binary Units
271(2)
9.2.6 Hybrid Geothermal-Fossil Power Units
273(1)
9.3 Effects of Impurities in the Geothermal Fluid
274(5)
9.4 Cooling Systems
279(1)
9.5 Geothermal District Heating: An Example of Exergy Savings and Environmental Benefit
280(2)
9.6 Environmental Effects
282(3)
Reference
285(2)
10 Biomass
287(26)
10.1 Biomass
288(8)
10.1.1 Biomass Production, World Potential
291(2)
10.1.2 Methods of Biomass Utilization
293(2)
10.1.3 Aquatic Biomass
295(1)
10.2 Biofuels
296(6)
10.2.1 Ethanol Production from Corn
298(4)
10.3 Environmental Effects
302(4)
10.3.1 Land Use
302(1)
10.3.2 Fresh Water Requirements
303(1)
10.3.3 Use of Fertilizers and Pesticides
304(1)
10.3.4 Unintended Production of Methane
305(1)
10.3.5 Other Effects
305(1)
10.4 Social, Economic and Other Issues for Biomass Utilization
306(3)
10.5 The Future of Biomass for Energy Production
309(2)
Reference
311(2)
11 Power from the Water
313(30)
11.1 Hydroelectric Power
314(6)
11.1.1 Global Hydroelectric Energy Production
315(3)
11.1.2 Planned Hydroelectric Installations and Future Expansion
318(1)
11.1.3 Environmental Impacts and Safety Concerns
319(1)
11.2 Tidal Power
320(7)
11.2.1 Systems for Tidal Power Utilization
322(4)
11.2.2 Environmental Effects of Tidal Systems
326(1)
11.3 Ocean Currents
327(1)
11.4 Wave Power
328(5)
11.4.1 Wave Mechanics and Wave Power
328(2)
11.4.2 Systems for Wave Power Utilization
330(2)
11.4.3 Environmental Effects of Wave Power and Other Considerations
332(1)
11.5 Ocean Thermal Energy Conversion (OTEC)
333(3)
11.5.1 Two Systems for OTEC
334(2)
11.5.2 Environmental Effects of OTEC and Other Considerations
336(1)
11.6 Types of Water Power Turbines
336(3)
11.7 Concluding Remarks on Water Power
339(4)
12 Energy Storage
343(40)
12.1 The Demand for Electricity: The Need to Store Energy
344(5)
12.2 Electromechanical Storage
349(9)
12.2.1 Pumped Water
349(2)
12.2.2 Compressed Air
351(2)
12.2.3 Springs, Torsion Bars and Flywheels
353(2)
12.2.4 Capacitors, Ultra capacitors, and Superconducting Coils
355(3)
12.3 Thermal Storage
358(5)
12.3.1 Sensible and Latent Heat Storage
358(2)
12.3.2 Heat Losses in Thermal Storage Systems
360(1)
12.3.3 Storage of "Coolness" to Offset the Peak Power Demand
361(2)
12.4 Chemical Storage: Batteries
363(6)
12.4.1 The Electrochemical Cell
363(3)
12.4.2 Commonly Used Battery Types
366(3)
12.5 Hydrogen Storage: The Hydrogen Economy
369(3)
12.6 Fuel Cells
372(9)
12.6.1 High-Temperature Fuel Cells
374(1)
12.6.2 Thermodynamic Losses and Fuel Cell Efficiency
375(6)
References
381(2)
13 Energy Conservation and Efficiency
383(36)
13.1 Societal Tasks, Energy Consumption, Conservation and Higher Efficiency
384(3)
13.2 The Use of the Exergy Concept to Reduce Energy Resource Consumption
387(9)
13.2.1 Utilization of Fossil Fuel Resources
387(2)
13.2.2 Minimization of Energy or Power Used for a Task
389(4)
13.2.3 Combination of Tasks: Cogeneration
393(1)
13.2.4 Waste Heat Utilization
394(2)
13.3 Conservation and Efficiency Measures in Buildings
396(13)
13.3.1 Use of Fluorescent Bulbs or Light Emitting Diodes
397(2)
13.3.2 Use of Heat Pump Cycles for Heating and Cooling
399(2)
13.3.3 Geothermal Heat Pumps
401(3)
13.3.4 Adiabatic Evaporation
404(1)
13.3.5 District Cooling
405(1)
13.3.6 Other Energy Conservation Measures for Buildings
406(3)
13.4 Conservation and Improved Efficiency in Transportation
409(8)
13.4.1 Electric Cars
411(2)
13.4.2 Fuel Cell Powered Vehicles
413(4)
Reference
417(2)
14 Economics of Energy Projects
419(36)
14.1 Introduction
420(1)
14.1.1 Fundamental Concepts and Definitions
420(1)
14.2 The Decision Making Process
421(3)
14.2.1 Developing a List of Alternatives
422(2)
14.3 The Time-Value of Money
424(7)
14.3.1 Simple and Compound Interest
425(1)
14.3.2 Cash Flow, Equivalence and Present Value
426(2)
14.3.3 Cash Flow Calculations
428(1)
14.3.4 A Note on the Discount Rate and Interest Rates
429(2)
14.4 Investment Appraisal Methods
431(5)
14.4.1 The Net Present Value (NPV)
431(1)
14.4.2 Average Return on Book (ARB)
432(1)
14.4.3 The Pay-Back Period (PBP)
433(1)
14.4.4 Internal Rate of Return (IRR)
434(1)
14.4.5 Profitability Index (PI)
435(1)
14.5 Use of the NPV Method for Electricity Generation Projects
436(15)
14.5.1 NPV and Governmental Incentives or Disincentives
440(6)
14.5.2 Use of the NPV Method for Improved Efficiency Projects
446(5)
14.6 Project Financing for Alternative Energy Technology
451(4)
Index 455
Efstathios E. (Stathis) Michaelides, Ph.D., P.E. is Professor and Chair of the Department of Mechanical Engineering. His Educational Background is B.A. Oxford University M.S., Ph.D. Brown University. His Areas of Teaching Interest are Energy Conversion, Thermodynamics and Fluid Dynamics. His Areas of Research Interest are Thermodynamics of Advanced Energy Conversion Devices, Energy Systems, Energy Conservation, HVAC, Multiphase Flow and Heat Transfer, Particulate Flow and Environmental Fluid Dynamics, Sediment Flow, Separation Processes, Materials Handling.