Muutke küpsiste eelistusi

E-raamat: Analog Filter and Circuit Design Handbook

  • Formaat: 640 pages
  • Ilmumisaeg: 29-Oct-2013
  • Kirjastus: McGraw-Hill Professional
  • Keel: eng
  • ISBN-13: 9780071816724
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 153,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 640 pages
  • Ilmumisaeg: 29-Oct-2013
  • Kirjastus: McGraw-Hill Professional
  • Keel: eng
  • ISBN-13: 9780071816724
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"A single-source design reference providing expert guidance on analog filter and circuit design Analog Filter and Circuit Design Handbook emphasizes the operational amplifier (op-amp) as the key building block, and provides a strong foundation of understanding of how op-amps work and what their limitations are. The book contains numerous circuit examples that provide mathematical functions on analog signals in both a linear and non-linear manner. Audio applications such as audio power amplifiers and cross-over networks are included. Extensive coverage of both active and passive filters Discusses audio power amplifiers, various types of waveforms, and non-linear amplifier applications Leads you through how IC operational amplifiers work, their critical parameters, and how to properly choose the appropriate amplifier for a given application Tables help you select the proper device for your requirements; combining amplifiers made by different manufacturers into a single table saves you from having to perform extensive searches among different manufacturers' websites. Includes free downloads: Filter Solutions from Nuhertz Technologies--enables the design of Elliptic Function low-pass filters up to the tenth order ELI 1.0--allows the design of odd-order elliptic function LC low-pass filters up to a complexity of 15 nulls (transmission zeros) or the 31st order Fltrform--an EXCEL spreadsheet arranged by chapter that contains all the significant formulas to simplify some of the calculations "--

Cutting-edge techniques for designing analog filters and circuits

With an emphasis on using operational amplifiers as key building blocks, Analog Filter and Circuit Design Handbook shows how to create working circuits that perform a variety of analog functions. Numerous circuit examples provide mathematical functions on analog signals in both a linear and nonlinear manner. The highly efficient elliptic-function filter response is featured throughout the book. Audio applications, such as audio power amplifiers and cross-over networks, are discussed, and both voltage and current feedback amplifiers are covered. This practical guide also analyzes the impact of nonideal amplifiers and addresses waveform shaping and generation.

ANALOG FILTER AND CIRCUIT DESIGN HANDBOOK COVERS:

  • Introduction to modern network theory
  • Selecting the response characteristic
  • Low-pass filter design
  • High-pass filter design
  • Bandpass filters
  • Band reject filters
  • Networks for the time domain
  • Refinements in LC filter design and the use of resistive networks
  • Component selection for LC and active filters
  • Normalized filter design tables
  • Switched capacitor filters
  • Adjustable, fixed delay, and amplitude equalizers
  • Voltage feedback operational amplifiers
  • Linear amplifier applications
  • Nonlinear circuits
  • Waveform shaping
  • Waveform generation
  • Current feedback amplifiers
  • Large signal amplifiers

INCLUDES FREE DOWNLOADS:

  • Filter Solutions from Nuhertz Technologies
  • ELI 1.0 Elliptic function filter design program
  • Fltrform--an Excel spreadsheet with essential formulas

Preface xv
1 Introduction to Modem Network Theory 1(12)
1.1 The Pole-Zero Concept
1(6)
1.2 Synthesis of Filters from Polynomials
7(4)
1.2.1 Synthesis by Expansion of Driving-Point Impedance
7(2)
1.2.2 Synthesis for Unequal Terminations
9(1)
1.2.3 Synthesis by Equating Coefficients
10(1)
1.3 Active versus Passive Filters
11(1)
1.3.1 Frequency Limitations
11(1)
1.3.2 Size Considerations
12(1)
1.3.3 Economics and Ease of Manufacture
12(1)
1.3.4 Ease of Adjustment
12(1)
References
12(1)
2 Selecting the Response Characteristic 13(72)
2.1 Frequency-Response Normalization
13(20)
2.1.1 Frequency and Impedance Scaling
13(4)
2.1.2 Low-Pass Normalization
17(1)
2.1.3 High-Pass Normalization
18(2)
2.1.4 Band-Pass Normalization
20(8)
2.1.5 Band-Reject Normalization
28(5)
2.2 Transient Response
33(14)
2.2.1 The Effect of Nonuniform Time Delay
33(3)
2.2.2 Step Response of Networks
36(2)
2.2.3 Impulse Response
38(1)
2.2.4 Estimating Transient Characteristics
38(9)
2.3 Butterworth Maximally Flat Amplitude
47(2)
2.4 Chebyshev Response
49(7)
2.5 Bessel Maximally Flat Delay
56(2)
2.6 Linear Phase with Equiripple Error
58(1)
2.7 Transitional Filters
59(5)
2.8 Synchronously Tuned Filters
64(7)
2.9 Elliptic-Function Filters
71(10)
2.9.1 Using Filter Solutions (Book Version) Software for Design of Elliptic Function Low-Pass Filters
80(1)
2.9.2 Using the ELI 1.0 Program for the Design of Odd-Order Elliptic-Function Low-Pass Filters up to the 31st Order
81(1)
2.10 Maximally Flat Delay With Chebyshev Stopband
81(1)
2.11 Papoulis Optimum "L" Filter
82(1)
References
83(2)
3 Low-Pass Filter Design 85(50)
3.1 LC Low-Pass Filters
85(14)
3.1.1 All- Pole Filters
85(1)
3.1.2 Elliptic-Function Filters
86(7)
3.1.3 Effects of Dissipation
93(2)
3.1.4 Using Predistorted Designs
95(4)
3.2 Active Low-Pass Filters
99(33)
3.2.1 All-Pole Filters
99(10)
3.2.2 VCVS Uniform Capacitor Structure
109(1)
3.2.3 The Low-Sensitivity Second-Order Section
110(2)
3.2.4 Elliptic-Function VCVS Filters
112(5)
3.2.5 State-Variable Low-Pass Filters
117(8)
3.2.6 Generalized Impedance Converters
125(7)
3.3 Minimal Phase-Shift Filters
132(1)
References
133(2)
4 High-Pass Filter Design 135(28)
4.1 LC High-Pass Filters
135(6)
4.1.1 The Low-Pass to High-Pass Transformation
135(4)
4.1.2 The T-to-Pi Capacitance Conversion
139(2)
4.2 Active High-Pass Filters
141(21)
4.2.1 The Low-Pass to High-Pass Transformation
141(1)
4.2.2 All-Pole High-Pass Filters
141(1)
4.2.3 Elliptic-Function High-Pass Filters
142(6)
4.2.4 State-Variable High-Pass Filters
148(9)
4.2.5 High-Pass Filters Using the GIC
157(1)
4.2.6 Active Elliptic-Function High-Pass Filters Using the GIC
158(1)
4.2.7 Constant-Delay High-Pass Filters
159(3)
References
162(1)
5 Band-Pass Filters 163(76)
5.1 LC Band-Pass Filters
163(35)
5.1.1 Wideband Filters
163(2)
5.1.2 Narrowband Filters
165(8)
5.1.3 The Design of Parallel Tuned Circuits
173(5)
5.1.4 The Design of Series Tuned Circuits
178(2)
5.1.5 Synchronously Tuned Filters
180(1)
5.1.6 Narrowband Coupled Resonators
181(7)
5.1.7 Predistorted Band-Pass Filters
188(3)
5.1.8 Elliptic-Function Band-Pass Filters
191(7)
5.2 Active Band-Pass Filters
198(39)
5.2.1 Wideband Filters
198(1)
5.2.2 The Band-Pass Transformation of Low-Pass Poles and Zeros
199(7)
5.2.3 Sensitivity in Active Band-Pass Circuits
206(1)
5.2.4 All-Pole Band-Pass Configurations
207(17)
5.2.5 Elliptic-Function Band-Pass Filters
224(13)
References
237(2)
6 Band-Reject Filters 239(40)
6.1 LC Band-Reject Filters
239(18)
6.1.1 The Band-Reject Circuit Transformation
239(1)
6.1.2 All-Pole Band-Reject Filters
240(4)
6.1.3 Elliptic-Function Band-Reject Filters
244(8)
6.1.4 Null Networks
252(5)
6.2 Active Band-Reject Filters
257(21)
6.2.1 Wideband Active Band-Reject Filters
257(2)
6.2.2 Band-Reject Transformation of Low-Pass Poles
259(6)
6.2.3 Narrowband Active Band-Reject Filters
265(7)
6.2.4 Active Null Networks
272(6)
References
278(1)
7 Networks for the Time Domain 279(38)
7.1 All-Pass Transfer Functions
279(4)
7.1.1 First-Order All-Pass Transfer Functions
279(2)
7.1.2 Second-Order All-Pass Transfer Functions
281(2)
7.2 Delay Equalizer Sections
283(9)
7.2.1 LC All-Pass Structures
283(4)
7.2.2 Active All-Pass Structures
287(5)
7.3 Design of All-Pass Delay Lines
292(7)
7.3.1 The Low-Pass to All-Pass Transformation
292(1)
7.3.2 LC Delay Lines
293(4)
7.3.3 Active Delay Lines
297(2)
7.4 Delay Equalization of Filters
299(8)
7.4.1 First-Order Equalizers
300(3)
7.4.2 Second-Order Equalizers
303(4)
7.5 Wideband 90° Phase-Shift Networks
307(6)
7.6 Design of Passive Delay Lines with Repetitious Elements
313(3)
7.6.1 An All-Pass Delay Line
313(2)
7.6.2 Image Parameter Unsymmetrical Delay Line
315(1)
References
316(1)
8 Refinements in LC Filter Design and the Use of Resistive Networks 317(38)
8.1 Introduction
317(1)
8.2 Tapped Inductors
317(3)
8.3 Circuit Transformations
320(5)
8.3.1 Norton's Capacitance Transformer
320(2)
8.3.2 Narrowband Approximations
322(3)
8.4 Designing with Parasitic Capacitance
325(3)
8.5 Amplitude Equalization for Inadequate Q
328(4)
8.6 Coil-Saving Elliptic-Function Band-Pass Filters
332(4)
8.7 Filter Tuning Methods
336(1)
8.8 Measurement Methods
337(7)
8.8.1 Insertion Loss and Frequency Response
337(1)
8.8.2 Input Impedance of Filter Networks
338(2)
8.8.3 Time-Domain Characteristics
340(1)
8.8.4 Group Delay
341(2)
8.8.5 Measuring the Q of Inductors
343(1)
8.9 Designing For Unequal Impedances
344(4)
8.9.1 Exponentially Tapered Impedance Scaling
344(1)
8.9.2 Minimum-Loss Resistive Pad for Impedance Matching
345(1)
8.9.3 Design of Unsymmetrical Resistive T and π Attenuators for Impedance Matching
345(3)
8.10 Symmetrical Attenuators
348(2)
8.10.1 Symmetrical T and π Attenuators
348(2)
8.11 Power Splitters
350(2)
8.11.1 Resistive Power Splitters
350(1)
8.11.2 A Magic-T Sputter
350(2)
8.12 Introduction of Transmission Zeros to an Existing Design
352(2)
References
354(1)
9 Component Selection for LC and Active Filters 355(24)
9.1 Review of Basic Magnetic Principles
355(3)
9.1.1 Units of Measurement
355(1)
9.1.2 Saturation and DC Polarization
356(1)
9.1.3 Inductor Losses
357(1)
9.1.4 Effect of an Air Gap
357(1)
9.2 Magnetic Materials and Physical Form Factors of Inductors
358(4)
9.2.1 Magnetic Materials
358(2)
9.2.2 Magnetic Coil Structures
360(1)
9.2.3 Surface-Mount RF Inductors
360(2)
9.3 Capacitor Selection
362(10)
9.3.1 Properties of Dielectrics
362(1)
9.3.2 Capacitor Construction
363(3)
9.3.3 Selecting Capacitors for Filter Applications
366(6)
9.4 Resistors
372(6)
9.4.1 Fixed Resistors
373(2)
9.4.2 Variable Resistors
375(2)
9.4.3 Resistor Johnson (Thermal) Noise
377(1)
References
378(1)
10 Normalized Filter Design Tables 379(72)
11 Switched-Capacitor Filters 451(18)
11.1 Introduction
451(1)
11.2 The Theory of Switched-Capacitor Filters
451(3)
11.2.1 The Switched Resistor
451(1)
11.2.2 The Basic Integrator as a Building Block
452(1)
11.2.3 The Limitations of Switched-Capacitor Filters
453(1)
11.3 Universal Switched-Capacitor Second-Order Filters
454(10)
11.3.1 Modes of Operation
455(1)
11.3.2 Operating Mode Features
455(4)
11.3.3 Using the MF10 and LMF100 Dual Universal Second-Order Filter
459(5)
11.4 Types of Switched-Capacitor Filters
464(1)
11.4.1 Universal
464(1)
11.4.2 Microprocessor-Programmable Universal Switched-Capacitor Filters
464(1)
11.4.3 Pin-Programmable Universal Switched-Capacitor Filters
465(1)
11.4.4 Dedicated Switched-Capacitor Filters
465(1)
11.5 The Switched-Capacitor Filter Selection Guide
465(3)
References
468(1)
12 Adjustable and Fixed Delay and Amplitude Equalizers 469(16)
12.1 The Need for Equalization
469(1)
12.1.1 Delay and Amplitude Equalization
469(1)
12.2 The Equalization Process
470(3)
12.2.1 Amplitude Equalization
470(2)
12.2.2 Delay Equalization
472(1)
12.3 Pole-Zero Concept Applied to Amplitude and Delay Equalizers
473(1)
12.4 Adjustable-Delay and Amplitude Equalizer Circuits
474(9)
12.4.1 LC Delay Equalizers
474(1)
12.4.2 LC Delay and Amplitude Equalizers
475(2)
12.4.3 Active Delay and Amplitude Equalizers
477(6)
References
483(2)
13 Voltage Feedback Operational Amplifiers 485(24)
13.1 Review of Basic Op-Amp Theory
485(5)
13.1.1 The Ideal Amplifier
485(1)
13.1.2 Inverting Amplifier
486(2)
13.1.3 Noninverting Amplifier
488(1)
13.1.4 Differential Input Amplifier
489(1)
13.1.5 Differential Input and Output Amplifier
490(1)
13.2 Analysis of Nonideal Amplifiers
490(5)
13.2.1 Noninverting Amplifier Analysis
490(1)
13.2.2 Inverting Amplifier Analysis
491(1)
13.2.3 Stability
492(2)
13.2.4 Effects of Open-Loop Gain
494(1)
13.3 Understanding Op-Amp Specifications
495(5)
13.3.1 Bandwidth and Gain
495(1)
13.3.2 Phase and Gain Margin
496(1)
13.3.3 DC Offsets
496(1)
13.3.4 Slew-Rate Limiting
497(1)
13.3.5 Settling Time
497(1)
13.3.6 Common-Mode Rejection Ratio (CMRR)
498(1)
13.3.7 Output Voltage Swing
498(1)
13.3.8 Noise
499(1)
13.3.9 Total Harmonic Distortion (TI-ID)
500(1)
13.4 Power Supply Considerations
500(3)
13.5 Operational Amplifier Selection
503(5)
13.5.1 Op-Amp Types
503(1)
13.5.2 Op-Amp Packaging
503(1)
13.5.3 Survey of Popular Amplifiers
504(4)
13.6 General Manufacturing Considerations
508(1)
References
508(1)
14 Linear Amplifier Applications 509(18)
14.1 Resistive Feedback Networks
509(10)
14.1.1 Adding and Subtracting Signals
509(3)
14.1.2 The Instrumentation Amplifier
512(2)
14.1.3 AC Coupling of Amplifiers
514(2)
14.1.4 Bootstrapping a Voltage Follower for high input impedance
516(1)
14.1.5 T-Network in Inverting Amplifier Feedback Loop to Reduce Resistor Values
517(1)
14.1.6 Bootstrapped Inverting Amplifier for High Input-Impedance
518(1)
14.2 Current-to-Voltage and Voltage-to-Current Converters
519(5)
14.2.1 Current-to-Voltage Converter
519(1)
14.2.2 Voltage-to-Current Converter (Current Source)
520(1)
14.2.3 The Howland Current Pump
521(3)
14.2.4 Current-Mode Amplifiers
524(1)
14.3 Bridge Amplifiers
524(2)
References
526(1)
15 Nonlinear Circuits 527(20)
15.1 Ideal Rectifiers and Their Applications
527(7)
15.1.1 Half-Wave Precision Rectifier
527(2)
15.1.2 Full-Wave Precision Rectifier
529(2)
15.1.3 Peak Detector
531(1)
15.1.4 Sample and Hold Circuit
532(2)
15.2 Automatic Gain Control
534(4)
15.3 Log and Antilog Circuits
538(3)
15.4 Multipliers
541(3)
15.4.1 The Gilbert Cell
542(1)
15.4.2 Multiplier Parameters
543(1)
15.4.3 Multiplier Math Functions
543(1)
15.5 Modulators
544(2)
References
546(1)
16 Waveform Shaping 547(16)
16.1 Integrators and Differentiators
547(4)
16.1.1 The Ideal Integrator
547(2)
16.1.2 A Practical Integrator
549(1)
16.1.3 Differentiators
549(2)
16.2 Comparators
551(11)
16.2.1 Basic Comparator
551(3)
16.2.2 Window Comparator
554(2)
16.2.3 Hysteresis
556(1)
16.2.4 Limiters
557(1)
16.2.5 Time-Delay Circuits Using Comparators
558(4)
References
562(1)
17 Waveform Generation 563(20)
17.1 Sine Wave Generators
563(6)
17.1.1 Phase Shift Oscillators
563(3)
17.1.2 The Wien Bridge Oscillator
566(2)
17.1.3 Multiple-Feedback Band-Pass Oscillator
568(1)
17.2 Generating Nonsinusoidal Waveforms
569(13)
17.2.1 Square Wave Relaxation Oscillator
569(1)
17.2.2 Triangular Wave Relaxation Oscillator
570(1)
17.2.3 The 555 Timer
571(4)
17.2.4 Hex Inverter RC Oscillators
575(7)
References
582(1)
18 Current Feedback Amplifiers 583(10)
18.1 Introduction to Current Feedback Amplifiers
583(1)
18.2 Analysis and Applications of Current Feedback Amplifiers
584(7)
18.2.1 Models of Current Feedback Amplifier
584(2)
18.2.2 Stability
586(2)
18.2.3 Slew Rate of CFB Op Amps
588(1)
18.2.4 Implementing VFB Designs Using CFB Op Amps
589(2)
References
591(2)
19 Large Signal Amplifiers 593(18)
19.1 Class D Amplifiers for Audio
593(8)
19.1.1 Half-Bridge Topology
593(2)
19.1.2 Full-Bridge Topology
595(1)
19.1.3 Class D Operation Without an Output Filter
595(2)
19.1.4 Class D LC Filter Design
597(4)
19.2 Crossover Networks
601(2)
19.2.1 Component Selection
602(1)
19.3 Transformer-Coupled Line Driver Configuration
603(4)
19.3.1 Traditional Transformer-Coupled Line Driver
603(1)
19.3.2 Differential Transformer-Coupled Line Driver
603(2)
19.3.3 Active Output Impedance Line Driver
605(2)
19.4 Thermal Management
607(3)
References
610(1)
Appendix A Software Download and Errata 611(2)
A.1 Software Download
611(1)
A.2 Installing and Using "FILTER SOLUTIONS" (Book Version) Software for Design of Elliptic Function Low-Pass Filters
611(1)
A.3 Installing and Using "ELI 1.0" Program for Design of Odd-Order Elliptic Function Low-Pass Filters up to 31st Order
612(1)
A.4 FLTRFORM.XLS Spreadsheet of Formulas
612(1)
A.5 Errata
612(1)
Index 613
McGraw-Hill authors represent the leading experts in their fields and are dedicated to improving the lives, careers, and interests of readers worldwide