Preface |
|
vii | |
Acknowledgments |
|
ix | |
|
1 Algorithmic systems biology |
|
|
1 | (8) |
|
|
1 | (3) |
|
|
4 | (2) |
|
1.3 Structure of the book |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
7 | (2) |
|
|
9 | (40) |
|
2.1 The structure of the cell |
|
|
9 | (4) |
|
|
13 | (7) |
|
|
17 | (1) |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
20 | (4) |
|
|
22 | (2) |
|
|
24 | (1) |
|
|
24 | (5) |
|
|
29 | (6) |
|
|
29 | (1) |
|
|
30 | (3) |
|
2.5.3 Trafficking and translocation |
|
|
33 | (2) |
|
|
35 | (11) |
|
2.6.1 Microarray technology |
|
|
35 | (2) |
|
|
37 | (6) |
|
|
43 | (1) |
|
2.6.4 Nuclear magnetic resonance spectroscopy |
|
|
44 | (2) |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
47 | (2) |
|
|
49 | (42) |
|
|
49 | (25) |
|
3.1.1 Classification of systems |
|
|
50 | (7) |
|
3.1.2 Properties of systems |
|
|
57 | (12) |
|
|
69 | (3) |
|
3.1.4 Hierarchical systems |
|
|
72 | (2) |
|
|
74 | (14) |
|
3.2.1 Classification of models |
|
|
77 | (3) |
|
3.2.2 Properties of models |
|
|
80 | (6) |
|
|
86 | (1) |
|
3.2.4 Hierarchical models |
|
|
87 | (1) |
|
|
88 | (1) |
|
|
89 | (2) |
|
4 Static modeling technologies |
|
|
91 | (40) |
|
4.1 Preliminary assessment |
|
|
91 | (3) |
|
|
94 | (8) |
|
4.2.1 Penalized regression |
|
|
99 | (3) |
|
4.3 Dimensionality reduction methods |
|
|
102 | (8) |
|
4.3.1 Principal component analysis |
|
|
103 | (3) |
|
4.3.2 Linear discriminant analysis |
|
|
106 | (1) |
|
4.3.3 Canonical correlation analysis |
|
|
107 | (3) |
|
|
110 | (5) |
|
4.4.1 Hierarchical clustering |
|
|
112 | (1) |
|
|
112 | (3) |
|
|
115 | (2) |
|
4.6 Analysis of biological networks |
|
|
117 | (12) |
|
|
120 | (2) |
|
4.6.2 Identification of active subnetworks |
|
|
122 | (7) |
|
|
129 | (1) |
|
|
130 | (1) |
|
5 Dynamic modeling technologies |
|
|
131 | (56) |
|
5.1 Equation-based approaches |
|
|
131 | (18) |
|
5.1.1 Differential equations |
|
|
131 | (17) |
|
5.1.2 Difference equations |
|
|
148 | (1) |
|
|
149 | (14) |
|
|
152 | (9) |
|
5.2.2 P-systems and membrane computing |
|
|
161 | (2) |
|
5.3 Network-based approaches |
|
|
163 | (10) |
|
|
163 | (3) |
|
|
166 | (7) |
|
5.4 Automata-based approaches |
|
|
173 | (3) |
|
|
174 | (1) |
|
|
175 | (1) |
|
5.5 Relationship between continuous and stochastic models |
|
|
176 | (1) |
|
5.6 Diagrammatic modeling |
|
|
177 | (7) |
|
|
179 | (2) |
|
|
181 | (3) |
|
|
184 | (1) |
|
|
184 | (3) |
|
6 Language-based modeling |
|
|
187 | (94) |
|
|
187 | (18) |
|
|
192 | (5) |
|
6.1.2 Second generation of calculi for biology |
|
|
197 | (8) |
|
6.2 Third generation: from calculi to modeling languages |
|
|
205 | (17) |
|
|
207 | (15) |
|
|
222 | (27) |
|
|
226 | (1) |
|
|
227 | (2) |
|
6.3.3 Introducing controls |
|
|
229 | (12) |
|
|
241 | (8) |
|
6.4 An evolutionary framework |
|
|
249 | (12) |
|
|
251 | (5) |
|
|
256 | (5) |
|
6.5 Domain-specific languages |
|
|
261 | (18) |
|
|
262 | (3) |
|
|
265 | (3) |
|
|
268 | (7) |
|
6.5.4 Relationships with other formalisms |
|
|
275 | (4) |
|
|
279 | (1) |
|
|
279 | (2) |
|
7 Dynamic modeling process |
|
|
281 | (20) |
|
7.1 Setting the objectives and the acceptance criteria |
|
|
282 | (2) |
|
7.2 Building the knowledge base |
|
|
284 | (6) |
|
7.3 From the knowledge base to a model schema |
|
|
290 | (7) |
|
7.4 From the model schema to a concrete model |
|
|
297 | (2) |
|
7.5 Model calibration, evaluation and refinement |
|
|
299 | (1) |
|
|
299 | (1) |
|
|
300 | (1) |
|
|
301 | (28) |
|
|
302 | (4) |
|
8.2 Random number generation |
|
|
306 | (5) |
|
8.2.1 Uniform random number generators |
|
|
307 | (3) |
|
8.2.2 General random number generators |
|
|
310 | (1) |
|
8.3 Stochastic simulation algorithms |
|
|
311 | (16) |
|
|
311 | (4) |
|
|
315 | (7) |
|
8.3.3 SSA-based reaction-diffusion |
|
|
322 | (1) |
|
8.3.4 The T-leaping approximation |
|
|
323 | (1) |
|
8.3.5 Language-based simulation |
|
|
324 | (3) |
|
|
327 | (1) |
|
|
327 | (2) |
|
9 Perspectives and conclusions |
|
|
329 | (4) |
|
|
333 | (12) |
|
A.1 Sets, relations and functions |
|
|
333 | (3) |
|
|
336 | (4) |
|
|
340 | (5) |
|
Appendix B Probability and statistics |
|
|
345 | (18) |
|
|
345 | (1) |
|
|
346 | (9) |
|
B.2.1 Useful random variables |
|
|
347 | (4) |
|
B.2.2 Joint random variables |
|
|
351 | (1) |
|
B.2.3 Some important results |
|
|
352 | (2) |
|
B.2.4 Some useful integer random variables |
|
|
354 | (1) |
|
|
355 | (8) |
|
|
355 | (1) |
|
B.3.2 Basic data visualization |
|
|
356 | (2) |
|
|
358 | (5) |
|
Appendix C Semantics of modeling languages |
|
|
363 | (30) |
|
C.1 Languages and grammars |
|
|
363 | (2) |
|
C.2 Structural operational semantics |
|
|
365 | (6) |
|
|
365 | (3) |
|
C.2.2 Structural operational semantic definitions |
|
|
368 | (3) |
|
C.3 The π-calculus and its stochastic extension |
|
|
371 | (3) |
|
|
374 | (4) |
|
|
378 | (6) |
|
|
384 | (9) |
|
|
384 | (1) |
|
C.6.2 Semantics of commands and expressions |
|
|
385 | (2) |
|
C.6.3 Syntactic desugaring |
|
|
387 | (2) |
|
|
389 | (4) |
Bibliography |
|
393 | (14) |
Index |
|
407 | |