Muutke küpsiste eelistusi

E-raamat: Analysis and Design of Multicell DC/DC Converters Using Vectorized Models

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 23-Feb-2015
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119081333
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 171,60 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 23-Feb-2015
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119081333
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Shows how the concepts of vectorization and design masks can be used to help the designer in comparing different designs and making the right choices. The book addresses series and parallel multicell conversion directly, and the concepts can be generalized to describe other topologies.

Chapter 1 General Properties Of Multilevel Converters 1(8)
1.1 Time-domain: multilevel waveform and apparent switching frequency
1(3)
1.2 Frequency domain: harmonic cancellation
4(1)
1.3 Transient response
5(1)
1.4 Conclusion
6(3)
Chapter 2 Topologies Of Multilevel DC/DC Converters 9(14)
2.1 Series connection
9(2)
2.1.1 Direct series connection with isolated sources
9(2)
2.1.2 Flying capacitor
11(9)
2.2 Parallel connection
14(1)
2.2.1 Interleaved choppers with star-connected inductors
14(3)
2.2.2 Interleaved choppers with InterCell Transformers (ICTs)
17(3)
2.3 Series-parallel connection
20(3)
Chapter 3 Concept Of Vectorization In Plecs 23(14)
3.1 Vectorized components
23(2)
3.2 Star-connection block and parallel multicell converter
25(2)
3.3 Series connection block and series multicell converter
27(1)
3.4 Generalized multicell commutation cell
28(6)
3.5 Practice
34(3)
3.5.1 How tog
34(1)
3.5.2 Basic blocks
34(3)
Chapter 4 Vectorized Modulator For Multilevel Choppers 37(20)
4.1 General principle
37(1)
4.2 xZOH: equalizing multisampler for multilevel choppers
38(15)
4.2.1 Control as the main source of perturbation
38(1)
4.2.2 Handling duty cycle variation
38(13)
4.2.3 Frequency response of the equalizing sampler and modulator
51(2)
4.3 Practice
53(4)
Chapter 5 Voltage Balance In Series Multilevel Converters 57(18)
5.1 Basic principles
57(1)
5.2 Linear circuits
58(7)
5.2.1 Internal balancers
58(1)
5.2.2 External balance boosters
59(5)
5.2.3 Pros and cons of internal/external balance boosters
64(1)
5.3 Nonlinear variants
65(2)
5.3.1 Internal balance boosters
65(1)
5.3.2 External balance boosters
66(1)
5.4 Loss-based design
67(2)
5.4.1 Introduction
67(1)
5.4.2 Internal balance boosters
68(1)
5.4.3 External balance boosters
68(1)
5.5 Vectorized models of balance boosters
69(6)
Chapter 6 Filter Design 75(14)
6.1 Requirements
75(10)
6.1.1 Steady state: current ripple, voltage ripple and standards
75(8)
6.1.2 Transients
83(1)
6.1.3 Extra design constraints
84(1)
6.2 Design process
85(4)
Chapter 7 Design Of Magnetic Components For Multilevel Choppers 89(42)
7.1 Requirements and problem formulation
89(3)
7.2 Area product
92(7)
7.2.1 Low frequency - low ripple formulation for filtering inductors
92(2)
7.2.2 General formulation for filtering inductors
94(1)
7.2.3 Application to inductors for interleaved converters
95(2)
7.2.4 Extension to InterCell Transformers
97(2)
7.3 Optimal area product of magnetic components for interleaved converters
99(2)
7.3.1 Optimal area product for inductors
99(2)
7.3.2 Optimal area product for InterCell Transformers
101(1)
7.4 Weight-optimal dimensions for a given area product
101(17)
7.4.1 For inductors
101(6)
7.4.2 For InterCell Transformers
107(11)
7.5 Volume-optimal dimensions for a given area product
118(2)
7.6 Number of turns and air gap
120(3)
7.7 Accounting for current overload
123(1)
7.8 Optimal phase sequence for InterCell Transformers
123(2)
7.9 Vectorized reluctance model of magnetics
125(5)
7.9.1 Inductors
125(1)
7.9.2 Cyclic cascade InterCell Transformers
126(2)
7.9.3 Monolithic InterCell Transformers
128(2)
7.10 Design process
130(1)
Chapter 8 Closed-Loop Control Of Multilevel DC/DC Converters 131(10)
8.1 Principle
131(2)
8.2 Corresponding PLECS block
133(3)
8.3 Average model of the macro- commutation cell for transient studies
136(4)
8.4 Conclusion
140(1)
Bibliography 141(4)
Index 145
Thierry Meynard is Directeur de Recherches CNRS at Laboratoire LAPLACE, ENSEEIHT, INPT, University of Toulouse, France and part-time consultant at CIRTEM (Centre d'ingénierie et de recherche en technologies de l'électrotechnique moderne). He is the co-inventor of various topologies of series multicell (multilevel) converters and has been involved in the transfer of several of these topologies to industry, especially in the field of medium voltage drives (typ. 1-10kV, 1-10MW). In recent years his research interests have focused on parallel multicell (interleaved) converters for application in low voltage embedded applications (<1kV) and on the design of corresponding magnetic components.