Preface |
|
xiii | |
Symbols and Acronyms |
|
xv | |
|
|
1 | (16) |
|
|
1 | (3) |
|
1.2 Form of Attacks in NCSs |
|
|
4 | (2) |
|
1.3 Problem Studied in This Book |
|
|
6 | (11) |
|
1.3.1 Attacks in Networked Control Systems |
|
|
6 | (3) |
|
1.3.2 Resilient Control of WNCSs |
|
|
9 | (1) |
|
1.3.3 Application of Resilient Control to Power System |
|
|
10 | (2) |
|
1.3.4 Coupled Design of CPS under Attacks |
|
|
12 | (5) |
|
Part I The Attacks in Networked Control Systems |
|
|
|
2 A Unified Game Approach for NCSs under DoS Attacks |
|
|
17 | (28) |
|
|
17 | (1) |
|
|
18 | (6) |
|
2.2.1 The Model of NCS Subject to DoS Attack |
|
|
18 | (2) |
|
2.2.2 MTOC and CTOC Design |
|
|
20 | (2) |
|
|
22 | (1) |
|
2.2.4 Defense and Attack Strategy Design |
|
|
23 | (1) |
|
2.3 MTOC and CTOC Control Strategies |
|
|
24 | (8) |
|
2.3.1 Finite Time Horizon Case |
|
|
24 | (5) |
|
2.3.2 Infinite Time Horizon Case |
|
|
29 | (3) |
|
2.4 Defense and Attack Strategies |
|
|
32 | (3) |
|
2.4.1 Development of Defense Strategies |
|
|
33 | (1) |
|
2.4.2 Development of Attack Strategies |
|
|
34 | (1) |
|
|
35 | (8) |
|
2.5.1 Building Model Description |
|
|
35 | (2) |
|
|
37 | (1) |
|
|
38 | (1) |
|
|
39 | (1) |
|
2.5.5 Experiment Verification |
|
|
40 | (3) |
|
|
43 | (2) |
|
3 Optimal Control for NCSs with Disturbances |
|
|
45 | (18) |
|
|
45 | (1) |
|
|
46 | (2) |
|
3.3 Optimal Controller Design in the Delta Domain |
|
|
48 | (3) |
|
3.3.1 Finite-Time Horizon Case |
|
|
48 | (1) |
|
3.3.2 Infinite-Time Horizon Case |
|
|
49 | (2) |
|
3.4 Robustness Analysis of e-Optimum |
|
|
51 | (6) |
|
3.4.1 Finite-Time Horizon Case |
|
|
51 | (4) |
|
3.4.2 Infinite-Time Horizon Case |
|
|
55 | (2) |
|
|
57 | (4) |
|
3.5.1 Numerical Simulation |
|
|
57 | (2) |
|
3.5.2 Experimental Verification |
|
|
59 | (2) |
|
|
61 | (2) |
|
4 Resilient NPC for NCSs against DoS Attack |
|
|
63 | (22) |
|
|
63 | (1) |
|
4.2 Problem Formulation and Preliminaries |
|
|
64 | (5) |
|
4.2.1 Optimal DoS Attack Scheme |
|
|
64 | (2) |
|
4.2.2 The Domain of Attraction |
|
|
66 | (3) |
|
|
69 | (9) |
|
|
69 | (2) |
|
4.3.2 Design of Kalman Filter |
|
|
71 | (2) |
|
|
73 | (4) |
|
4.3.4 Algorithms of Attacks and Defenses |
|
|
77 | (1) |
|
|
78 | (4) |
|
|
82 | (3) |
|
Part II Resilient Control of WNCSs |
|
|
|
5 A Hierarchical Game Approach to Secure WNCSs |
|
|
85 | (22) |
|
|
85 | (1) |
|
|
86 | (4) |
|
5.2.1 Transmit Model with SINR |
|
|
86 | (2) |
|
5.2.2 Control Model under Disturbance |
|
|
88 | (2) |
|
|
90 | (9) |
|
5.3.1 Strategy Design for G 1 |
|
|
91 | (2) |
|
5.3.2 Strategy Design for G 2 |
|
|
93 | (6) |
|
5.3.3 Coupled Design for the WNCS |
|
|
99 | (1) |
|
|
99 | (7) |
|
|
106 | (1) |
|
6 A Bayesian Game Approach to Secure WNCSs |
|
|
107 | (20) |
|
|
107 | (1) |
|
|
108 | (5) |
|
|
108 | (1) |
|
6.2.2 Wireless Communication Channel |
|
|
109 | (2) |
|
6.2.3 Beyasian Stackelberg Game Equilibrium |
|
|
111 | (2) |
|
|
113 | (8) |
|
6.3.1 Best Responses for Cyber-Layer Game |
|
|
113 | (2) |
|
6.3.2 Optimal Controller Design |
|
|
115 | (4) |
|
|
119 | (2) |
|
|
121 | (3) |
|
|
124 | (3) |
|
Part III Application of Resilient Control to Power System |
|
|
|
7 Quantifying the Impact of Attacks on NCSs |
|
|
127 | (20) |
|
|
127 | (1) |
|
|
128 | (3) |
|
|
131 | (12) |
|
7.3.1 Multitasking Optimal Control Strategy |
|
|
131 | (3) |
|
7.3.2 Robustness Analysis of E-NE |
|
|
134 | (9) |
|
|
143 | (2) |
|
|
145 | (2) |
|
8 Resilient Control of CPS against Intelligent Attacker |
|
|
147 | (16) |
|
|
147 | (1) |
|
|
148 | (3) |
|
8.2.1 Hierarchical Model for RCS |
|
|
148 | (2) |
|
|
150 | (1) |
|
|
151 | (5) |
|
8.3.1 Stackelberg Configuration Strategy for G 1 |
|
|
151 | (2) |
|
8.3.2 Stackelberg Control Strategy for G 2 |
|
|
153 | (3) |
|
8.3.3 Coupled Design of RCS |
|
|
156 | (1) |
|
|
156 | (3) |
|
|
156 | (2) |
|
|
158 | (1) |
|
|
158 | (1) |
|
|
159 | (4) |
|
9 Multitasking Optimal Control of NCSs |
|
|
163 | (26) |
|
|
163 | (1) |
|
|
164 | (5) |
|
9.2.1 Delta-Domain Model of NCS |
|
|
164 | (3) |
|
9.2.2 Design Objective for Multitasking NCS |
|
|
167 | (2) |
|
|
169 | (11) |
|
9.3.1 Design of the Control Strategy |
|
|
169 | (4) |
|
|
173 | (7) |
|
|
180 | (5) |
|
|
185 | (4) |
|
Part IV Coupled Design of CPS under Attacks |
|
|
|
10 Coupled Design of IDS and CPS under DoS Attacks |
|
|
189 | (18) |
|
|
189 | (1) |
|
|
190 | (3) |
|
|
190 | (1) |
|
|
190 | (2) |
|
|
192 | (1) |
|
|
193 | (9) |
|
10.3.1 NE Configuration Strategy for G 1 |
|
|
193 | (2) |
|
10.3.2 NE Control Strategy for G 2 |
|
|
195 | (5) |
|
10.3.3 Coupled Design Problem |
|
|
200 | (2) |
|
10.4 Numerical Simulation |
|
|
202 | (3) |
|
|
202 | (1) |
|
10.4.2 Simulation Results |
|
|
203 | (2) |
|
10.5 Conclusion and Future Work |
|
|
205 | (2) |
|
11 Attack-Tolerant Control for Nonlinear NCSs |
|
|
207 | (16) |
|
|
207 | (1) |
|
11.2 Problem Statement and Preliminaries |
|
|
208 | (5) |
|
|
209 | (1) |
|
|
210 | (3) |
|
11.3 Iterative ADP Algorithm |
|
|
213 | (3) |
|
11.3.1 Formula Derived for Iterative ADP Algorithm |
|
|
213 | (1) |
|
11.3.2 Properties of Iterative ADP Algorithm |
|
|
214 | (2) |
|
11.4 Realization of Iterative ADP Algorithm by Neural Networks |
|
|
216 | (3) |
|
|
219 | (2) |
|
|
221 | (2) |
|
12 Coupled Design of CPS under DoS Attacks |
|
|
223 | (16) |
|
|
223 | (1) |
|
12.2 Resilient and H∞ Optimal Control |
|
|
224 | (9) |
|
|
224 | (1) |
|
|
225 | (1) |
|
12.2.3 Optimal Defense Mechanism |
|
|
226 | (3) |
|
12.2.4 H∞ Optimal Control |
|
|
229 | (3) |
|
|
232 | (1) |
|
12.3 Numerical Simulation |
|
|
233 | (4) |
|
|
237 | (2) |
|
13 Attack-Tolerant Control under DoS Attacks |
|
|
239 | (28) |
|
|
239 | (1) |
|
|
240 | (1) |
|
|
241 | (5) |
|
13.4 Optimal Strategy Design |
|
|
246 | (14) |
|
13.4.1 Optimal Defense Policy |
|
|
246 | (3) |
|
13.4.2 Hoo Optimal Control |
|
|
249 | (8) |
|
13.4.3 Joint Optimal Policy Design |
|
|
257 | (3) |
|
13.5 Numerical Simulation |
|
|
260 | (5) |
|
|
265 | (2) |
References |
|
267 | (10) |
Index |
|
277 | |