Muutke küpsiste eelistusi

E-raamat: Analysis For Diffusion Processes On Riemannian Manifolds

(Tianjin Univ, China & Swansea Univ, Uk)
  • Formaat - PDF+DRM
  • Hind: 53,82 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Drawing on and complementing published literature since the turn of the century, Wang presents a self-contained theory concerning diffusion processes on Riemannian manifolds with or without boundary. He begins by setting out fundamental results from Riemannian manifolds, coupling method and applications, and a brief theory of functional inequalities. Then he discusses diffusion processes on Riemannian manifolds without boundary, reflecting diffusion processes on manifolds with boundary, stochastic analysis on path space over manifolds with boundary, and sub-elliptic diffusion processes. Annotation ©2014 Ringgold, Inc., Portland, OR (protoview.com)

Stochastic analysis on Riemannian manifolds without boundary has been well established. However, the analysis for reflecting diffusion processes and sub-elliptic diffusion processes is far from complete. This book contains recent advances in this direction along with new ideas and efficient arguments, which are crucial for further developments. Many results contained here (for example, the formula of the curvature using derivatives of the semigroup) are new among existing monographs even in the case without boundary.
Diffusion Processes on Riemannian Manifolds; Reflecting Diffusion
Processes on Riemannian Manifolds with Boundary; Coupling and Applications;
Harnack Inequalities and Applications; Functional Inequalities and
Applications; Formulae for the Curvature and Second Fundamental Form;
Equivalent Semigroup Inequalities for the Lower Bounds of Curvature and
Second Fundamental Form; Modified Curvature and Applications; Robin Semigroup
and Applications; Stochastic Analysis on the Path Space Over Manifolds with
Boundary; Subelliptic Diffusion Processes.