Muutke küpsiste eelistusi

E-raamat: Analysis and Enumeration: Algorithms for Biological Graphs

  • Formaat: PDF+DRM
  • Sari: Atlantis Studies in Computing 6
  • Ilmumisaeg: 23-Mar-2015
  • Kirjastus: Atlantis Press (Zeger Karssen)
  • Keel: eng
  • ISBN-13: 9789462390973
  • Formaat - PDF+DRM
  • Hind: 77,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Atlantis Studies in Computing 6
  • Ilmumisaeg: 23-Mar-2015
  • Kirjastus: Atlantis Press (Zeger Karssen)
  • Keel: eng
  • ISBN-13: 9789462390973

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In this work we plan to revise the main techniques for enumeration algorithms and to show four examples of enumeration algorithms that can be applied to efficiently deal with some biological problems modelled by using biological networks: enumerating central and peripheral nodes of a network, enumerating stories, enumerating paths or cycles, and enumerating bubbles. Notice that the corresponding computational problems we define are of more general interest and our results hold in the case of arbitrary graphs. Enumerating all the most and less central vertices in a network according to their eccentricity is an example of an enumeration problem whose solutions are polynomial and can be listed in polynomial time, very often in linear or almost linear time in practice. Enumerating stories, i.e. all maximal directed acyclic subgraphs of a graph G whose sources and targets belong to a predefined subset of the vertices, is on the other hand an example of an enumeration problem with an exponential number of solutions, that can be solved by using a non trivial brute-force approach. Given a metabolic network, each individual story should explain how some interesting metabolites are derived from some others through a chain of reactions, by keeping all alternative pathways between sources and targets. Enumerating cycles or paths in an undirected graph, such as a protein-protein interaction undirected network, is an example of an enumeration problem in which all the solutions can be listed through an optimal algorithm, i.e. the time required to list all the solutions is dominated by the time to read the graph plus the time required to print all of them. By extending this result to directed graphs, it would be possible to deal more efficiently with feedback loops and signed paths analysis in signed or interaction directed graphs, such as gene regulatory networks. Finally, enumerating mouths or bubbles with a source s in a directed graph, that is enumerating all the two vertex-disjoint directed paths between the source s and all the possible targets, is an example of an enumeration problem in which all the solutions can be listed through a linear delay algorithm, meaning that the delay between any two consecutive solutions is linear, by turning the problem into a constrained cycle enumeration problem. Such patterns, in a de Bruijn graph representation of the reads obtained by sequencing, are related to polymorphisms in DNA- or RNA-seq data.

Arvustused

This book is the publication of author's Ph.D. dissertation [ Algorithms for biological graphs: analysis and enumeration, Univ. Florence, 2013] and is supported by the Italian Chapter of the EATCS. Only two dissertations a year might get this recognition so, as one expects, this is a high level text. The book itself is nice to read and has an excellent bibliography. (András Sándor Pluhár, Mathematical Reviews, April, 2017)

1 Introduction
1(12)
1.1 An Application: Biological Graph Analysis
2(1)
1.2 Enumerating Stories
2(2)
1.3 Enumerating Bubbles
4(1)
1.4 Enumerating Cycles or Paths
5(1)
1.5 Further Analysis: Enumerating Central and Peripheral Vertices
6(1)
1.6 Basic Definitions and Notations
7(2)
1.7 Structure of the Work
9(4)
Part I Enumeration Algorithm Techniques and Applications
2 Enumeration Algorithms
13(24)
2.1 Introduction
13(1)
2.2 Algorithmic Issues and Brute Force Approaches
14(2)
2.3 Basic Algorithms
16(11)
2.3.1 Backtracking
17(1)
2.3.2 Binary Partition
18(1)
2.3.3 Reverse Search
19(8)
2.4 Amortized Analysis
27(7)
2.4.1 Basic Amortization
28(2)
2.4.2 Amortization by Children
30(1)
2.4.3 Push Out Amortization
31(3)
2.5 Data-Driven Speed up
34(3)
3 An Application: Biological Graph Analysis
37(10)
3.1 Introduction
37(1)
3.2 Biological Networks
37(6)
3.2.1 Protein-Protein Interaction Network
38(1)
3.2.2 Metabolic Network
38(2)
3.2.3 Gene Regulatory Network
40(2)
3.2.4 De Bruijn Graph
42(1)
3.3 Analysis and Enumeration of Biological Networks
43(4)
Part II Three Examples of Enumeration Algorithms
4 Telling Stories: Enumerating Maximal Directed Acyclic Graphs with Constrained Set of Sources and Targets
47(18)
4.1 Introduction
47(3)
4.2 Preliminaries
50(1)
4.3 Preprocessing the Graph
51(3)
4.4 Finding Single Stories
54(3)
4.5 Enumerating Stories
57(3)
4.5.1 Enumerating Stories by Enumerating FASs
57(2)
4.5.2 Enumerating Stories by Enumerating Permutations
59(1)
4.6 Enumerating Stories: An Example
60(1)
4.7 Alternative Definition of a Story
61(2)
4.8 Conclusion and Open Problems
63(2)
5 Enumerating Bubbles: Listing Pairs of Vertex Disjoint Paths
65(14)
5.1 Introduction
65(1)
5.2 Preliminaries
66(1)
5.3 Turning Bubbles into Cycles
67(1)
5.4 The Algorithm
68(3)
5.5 Enumerating Bubbles: An Example
71(3)
5.6 Proof of Correctness and Complexity Analysis
74(2)
5.7 Avoiding Duplicate Bubbles
76(1)
5.8 Conclusion and Open Problems
77(2)
6 Enumerating Cycles and (s, t)-Paths in Undirected Graphs
79(30)
6.1 Introduction
79(3)
6.2 Preliminaries
82(1)
6.3 Overview and Main Ideas
83(7)
6.3.1 Reduction to Paths
83(1)
6.3.2 Decomposition in Biconnected Components
84(1)
6.3.3 Binary Partition Scheme
85(1)
6.3.4 Introducing the Certificate
86(2)
6.3.5 Recursion Tree and Cost Amortization
88(2)
6.4 Amortization Strategy
90(2)
6.5 Certificate Implementation and Maintenance
92(4)
6.6 Enumerating Paths: An Example
96(3)
6.7 Extended Analysis of Operations
99(6)
6.7.1 Operation Right_Update(C, e)
100(2)
6.7.2 Operation Left_Update(C, e)
102(3)
6.8 Conclusion and Open Problems
105(4)
Part III Further Analysis
7 Enumerating Diametral and Radial Vertices and Computing Diameter and Radius of a Graph
109(30)
7.1 Introduction
109(3)
7.2 Overview on Centrality Analysis for Biological Networks
112(2)
7.3 Computing the Diameter and Enumerating All the Diametral Vertices
114(9)
7.3.1 Restricting to Undirected Graphs
119(2)
7.3.2 Generalizing to Weighted Graphs
121(2)
7.4 Computing the Radius and Enumerating All the Radial Vertices
123(1)
7.5 Enumerating Diametral and Radial Vertices: An Example
124(3)
7.6 Ad Hoc Bad Cases
127(2)
7.7 Experiments
129(9)
7.7.1 Directed Graphs
129(3)
7.7.2 Undirected Graphs
132(2)
7.7.3 Overall Results
134(4)
7.8 Conclusion and Open Problems
138(1)
8 Conclusions
139(2)
References 141