Muutke küpsiste eelistusi

E-raamat: Analysis of Flame Retardancy In Polymer Science

Edited by (University Professor, Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology, Poland), Edited by (Professor, Department of Applied Science and Technology, P), Edited by (Full Professor, University of Lorraine, Metz, France)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 10-Mar-2022
  • Kirjastus: Elsevier Science Publishing Co Inc
  • Keel: eng
  • ISBN-13: 9780128242612
  • Formaat - PDF+DRM
  • Hind: 252,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 10-Mar-2022
  • Kirjastus: Elsevier Science Publishing Co Inc
  • Keel: eng
  • ISBN-13: 9780128242612

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Analysis of Flame Retardancy in Polymer Science is a scientific/practical book that is conceptualized, designed, and written for students, early-career researchers, and junior engineers to explain the basic principles of fire analysis/characterization methods/methodologies, from flammability, ignition, and fire spread to forced convection and related analyses and to elucidate the mechanisms underlying flame retardancy in both gas and condensed phases followed by correlation between laboratory- and real-scale fire analyses as well as fire analysis from an industrial standpoint. This book is also an indispensable resource for identifying and mounting the latest achievements in fire analysis/characterization methods to frame the effects of fire evaluation strategies to be utilized for research and development. The book also gives a broad description of fire analysis related to different standards and regulations for different applications in different geographic zones.
Contributors xiii
Preface xv
Chapter 1 Fundamentals: Flammability, ignition, and fire spread in polymers
1(72)
Arthur Richard Horrocks
1 Introduction
1(4)
1.1 Polymers and the fire triangle
1(2)
1.2 Glossary of terms
3(2)
2 Thermal transitions, thermoplasticity, and geometric effects
5(5)
2.1 Thermophysical effects
7(1)
2.2 Thermally thin versus thermally thick materials
8(1)
2.3 Effect of sample geometry, orientation, and physical structure
8(2)
3 Fuel-forming reactions: Polymer pyrolysis and ignition
10(17)
3.1 Thermal degradation or pyrolysis
10(2)
3.2 Pyrolysis of individual polymer types
12(15)
4 Oxidative degradation
27(1)
5 Combustion and fire spread: Effect of incident heat flux
28(9)
5.1 Ignition
30(1)
5.2 Effect of heat flux
31(5)
5.3 Smoke
36(1)
6 Flame retardance: Effect of flame retardants on ignition, combustion, and smoke generation
37(10)
6.1 Flame-retardant types and characteristics
39(2)
6.2 Synergism, additivity, and antagonism
41(3)
6.3 Environmental challenges and the potential for nanotechnology FR developments
44(3)
7 General appraisal of pyrolysis/ignition/burn versus reaction-to-fire test methodologies
47(7)
7.1 Simple ignition-based tests
48(1)
7.2 Reaction-to-fire tests
49(4)
7.3 Smoke tests
53(1)
74 Exemplar larger-scale, reaction-fire tests
54(2)
8 Conclusions and future perspectives
56(2)
References
58(14)
Further reading
72(1)
Chapter 2 Forced combustion; Cone calorimetry
73(18)
Vytenis Babrauskas
1 Introduction
73(2)
2 The forced-combustion environment
75(3)
3 Additional instrumentation
78(3)
4 Using the data
81(5)
4.1 Simple methods
81(4)
4.2 Data for modeling
85(1)
5 Conclusions
86(1)
Acknowledgment
87(1)
References
87(4)
Chapter 3 Microscale forced combustion: Pyrolysis-combustion flow calorimetry CPCFC}
91(26)
Rodolphe Sonnier
1 Introduction
91(1)
2 PCFC description
92(3)
3 Study of pyrolysis
95(5)
3.1 Combining PCFC and TGA
95(1)
3.2 Activation energy for pyrolysis
95(2)
3.3 Interactions in solid phase
97(1)
3.4 Aerobic pyrolysis--- Thermo-oxidation
98(2)
4 Combustion
100(7)
4.1 Incomplete combustion in PCFC by controlling the combustor temperature
100(2)
4.2 Monitoring the residence time in combustor
102(2)
4.3 Coupling PCFC with gas analyzers
104(2)
4.4 Monitoring the fuel/oxygen ratio
106(1)
5 Prediction of flammability data
107(6)
5.1 Predicting the flammability of polymeric structures
107(1)
5.2 Predicting the temperature of solid surface atignition from PCFC
108(2)
5.3 Correlations with fire tests
110(2)
5.4 Milligram-scale flame calorimetry (MFC)
112(1)
6 Concluding remarks and future perspectives
113(1)
Acknowledgments
114(1)
References
114(3)
Chapter 4 Evaluation of gas phase: Mechanisms and analyses
117(44)
Sabyasachi Gaan
1 Introduction
117(2)
2 Types of gas-phase mechanism
119(5)
3 Common analytical tools for gas-phase mechanism evaluation
124(28)
3.1 Thermogravimetry-infrared spectroscopy (TG-FTIR)/mass spectrometry (MS) coupled analysis
124(5)
3.2 Direct insertion probe-mass spectrometry (DIP-MS)
129(2)
3.3 Pyrolysis-gas chromatography coupled technique
131(5)
3.4 Microscale combustion calorimeter (MCC) and its variations
136(6)
3.5 Cone calorimeter
142(1)
3.6 Detection of phosphorus-based gas-phase reactive species
143(9)
4 Concluding remarks and future perspectives
152(1)
Acknowledgment
153(1)
References
153(8)
Chapter 5 Evaluation of gas phase: Smoke and toxicity analysis
161(30)
Eric Guillaume
1 Introduction
161(1)
2 Smoke contents
161(5)
2.1 Gaseous fire effluents
161(4)
2.2 Solid and liquid fire effluents
165(1)
3 Analysis of smoke
166(9)
3.1 Smoke opacity
166(4)
3.2 Smoke gases' concentrations
170(5)
4 Impacts of smoke
175(11)
4.1 Visibility through smoke
175(1)
4.2 Smoke inhalation
176(9)
4.3 Environmental effects
185(1)
5 Conclusions and perspectives
186(1)
References
186(5)
Chapter 6 Evaluation of condensed phase: Char/residue analysis
191(42)
Serge Bourbigot
1 Introduction
191(2)
2 Fundamentals of char and residue formation
193(2)
2.1 Ceramization
193(1)
2.2 Intumescence
193(1)
2.3 Physical barrier (nanocomposite)
194(1)
2.4 Charring
195(1)
3 Chemical characterization: Chemical composition
195(20)
3.1 Fourier transform infrared spectroscopy (FTIR)
196(3)
3.2 Raman spectroscopy
199(2)
3.3 X-ray photoelectron spectroscopy (XPS)
201(4)
3.4 X-ray diffraction (XRD]
205(2)
3.5 Solid-state nuclear magnetic resonance (ssNMR)
207(6)
3.6 Electron spin resonance [ ESR]
213(2)
4 Microscopy: Morphology of the residue
215(8)
4.1 Scanning electron microscopy [ SEM]
215(1)
4.2 Electron probe micro-analysis (EPMA)
216(1)
4.3 Transmission electron microscopy (TEM)
217(3)
4.4 X-ray computed tomography (CT]
220(3)
5 Dynamics of char/residue formation
223(2)
5.1 Viscosity
223(1)
5.2 Deformation and expansion
224(1)
6 Conclusions and future trends
225(1)
References
226(7)
Chapter 7 Analysis of fire resistance of materials
233(66)
Thomas Rogaume
Benjamin Batiot
Eric Guillaume
1 Introduction
233(4)
2 Definitions and application of fire resistance
237(5)
2.1 Concept of fire resistance
237(2)
2.2 Fire resistance evaluation---Experimental and modeling characterization
239(2)
2.3 Influence of fire resistance objectives on human behavior
241(1)
3 Material applications of fire resistance
242(6)
3.1 Non-combustible materials
244(1)
3.2 Combustible materials
245(3)
4 Conventional approach of fire resistance
248(18)
4.1 General principles
248(1)
4.2 Building application
249(12)
4.3 Transport application
261(4)
4.4 Outside Europe
265(1)
4.5 Limits of the conventional approach
266(1)
5 Performance approach
266(26)
5.1 Fire dynamics for fire resistance
267(13)
5.2 Fire analysis applied to structural analysis
280(3)
5.3 Thermal analysis
283(1)
5.4 Experimental approach using large-scale and real-scale tests
284(2)
5.5 Structural fire engineering
286(6)
6 Conclusions and perspectives
292(1)
Acknowledgments
293(1)
References
293(6)
Chapter 8 Characterization of high-temperature polymers for extreme environments
299(34)
Hao Wu
Joseph H. Koo
1 Introduction
299(4)
2 High-temperature polymers
303(8)
2.1 High-temperature thermosets
303(5)
2.2 High-temperature thermoplastics
308(3)
3 Aerothermal ablation testing for high-temperature applications
311(14)
3.1 Oxyacetylene test bed (OTB)
311(2)
3.2 Simulated solid rocket motor (SSRM)
313(2)
3.3 Subscale solid rocket motor (char motor)
315(1)
3.4 LHMEL test facilities
316(2)
3.5 ICP test facilities
318(3)
3.6 Arc jet test facilities
321(4)
4 Concluding remarks
325(1)
References
326(7)
Chapter 9 Correlation between laboratory- and real-scale fire analyses
333(48)
Laurent Aprin
Laurent Ferry
Frederic Heymes
Rodolphe Sonnier
Pascal Zavaleta
1 Introduction
333(8)
1.1 From microscale to small scale
336(3)
1.2 Correlations between small-scale tests
339(1)
1.3 From small-scale tests to intermediate- or large-scale tests
340(1)
2 Case study no. 1: Fire behavior of PMMA
341(13)
2.1 Flammability at microscale
342(1)
2.2 From small to intermediate scales
342(10)
2.3 Interactions at large scale
352(1)
2.4 Conclusion
353(1)
3 Case study no. 2: Electric cable tray fires
354(10)
3.1 Assessment of the pHRR of horizontal cable tray fires
356(5)
3.2 Assessment of the HRR of horizontal cable tray fires
361(2)
3.3 Conclusion
363(1)
4 Case study no. 3: Wildfires
364(10)
4.1 The need for flame retardants research in wildfires science
365(1)
4.2 Scales in wildfires
366(1)
4.3 Experimental tests in wildfire research
367(2)
4.4 Linking small-scale, large-scale, and real-scale tests
369(1)
4.5 Strategies for upscaling wildfire dynamics
369(1)
4.6 Rothermel model
370(1)
4.7 Limitations
371(2)
4.8 Conclusions
373(1)
References
374(7)
Chapter 10 Fire analysis tests from industrial point of view
381(68)
Eric Guillaume
1 Fundamental principles
381(1)
2 Scenario-based approach
382(4)
2.1 Criteria
382(1)
2.2 Safety objectives
382(2)
2.3 Materials, products, and systems problematics
384(1)
2.4 Reference scenarios
385(1)
3 Building products
386(15)
3.1 Europe
386(8)
3.2 North America
394(4)
3.3 Other building products
398(3)
4 Cables
401(5)
4.1 Europe
401(4)
4.2 Others
405(1)
5 Electrotechnical products
406(1)
5.1 Principle
406(1)
5.2 Main test methods
406(1)
6 Others
407(3)
6.1 UL94
407(1)
6.2 Heat release rate measurements
408(2)
6.3 Smoke corrosivity
410(1)
7 Transportation
410(25)
7.1 Road transportation field
410(3)
7.2 Rail transportation field
413(12)
7.3 Marine field
425(6)
7.4 Aeronautical field
431(4)
8 Conclusions and perspectives
435(2)
References
437(12)
Index 449
Prof. Henri Vahabi received his Ph.D. in Materials Science from the University of Montpellier, France, in 2011. He is currently a Full Professor at the University of Lorraine, France. His research is focused on thermal degradation, flame retardancy of thermosets and thermoplastics, and the development of innovative flame-retardant systems. Prof. Vahabi has authored over 170 articles in ISI-indexed journals and has edited four books. Furthermore, he serves as a committee member of the "Fire Group" within the Chemical Society of France and holds the position of Associate Editor for the Polymers from Renewable Resources journal.

Mohammad Reza Saeb is University Professor at the Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology. He conceptualizes processing-microstructure-properties-performance interrelationships in polymer blends and nanocomposites. He also visualizes network formation-network degradation correlation in polymer systems by analyzing cure kinetics, thermal degradation kinetics, and flame retardancy. Giulio Malucelli is Professor at the Department of Applied Science and Technology of Politecnico di Torino, Italy. His research interests include the investigation of structure-property relationships, the fire behavior of textiles modified by surface-engineered systems, and the design and exploitation of bio-sourced products as effective flame retardants.