Muutke küpsiste eelistusi

E-raamat: Analysis and Forecasting of Financial Time Series: Selected Cases

  • Formaat: 404 pages
  • Ilmumisaeg: 11-Oct-2022
  • Kirjastus: Cambridge Scholars Publishing
  • ISBN-13: 9781527588851
  • Formaat - PDF+DRM
  • Hind: 142,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 404 pages
  • Ilmumisaeg: 11-Oct-2022
  • Kirjastus: Cambridge Scholars Publishing
  • ISBN-13: 9781527588851

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book brings together real-world cases illustrating how to analyse volatile financial time series in order to provide a better understanding of their past behavior and robust forecasting of their future behavioural patterns. Using time series data from diverse financial sectors, it shows how the concepts and techniques of statistical analysis, machine learning, and deep learning are applied to build robust predictive models, as well as the ways in which these models can be used for forecasting the future prices of stocks and constructing profitable portfolios of investments. All the concepts and methods used in the book have been implemented using Python and R languages on TensorFlow and Keras frameworks. The volume will be particularly useful for advanced postgraduate and doctoral students of finance, economics, econometrics, statistics, data science, computer science, and information technology.
Jaydip Sen is a Professor in Machine Learning and Artificial Intelligence at Praxis Business School, India. He has authored around 250 papers and book chapters and four books, and has edited 20 further volumes. His areas of research are applied statistical modeling, data mining and machine learning, social media analytics, artificial intelligence, and deep learning.