Muutke küpsiste eelistusi

E-raamat: Analysis on Lie Groups with Polynomial Growth

  • Formaat: PDF+DRM
  • Sari: Progress in Mathematics 214
  • Ilmumisaeg: 06-Dec-2012
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9781461220626
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Progress in Mathematics 214
  • Ilmumisaeg: 06-Dec-2012
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9781461220626

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Analysis on Lie Groups with Polynomial Growth is the first book to present a method for examining the surprising connection between invariant differential operators and almost periodic operators on a suitable nilpotent Lie group. It deals with the theory of second-order, right invariant, elliptic operators on a large class of manifolds: Lie groups with polynomial growth. In systematically developing the analytic and algebraic background on Lie groups with polynomial growth, it is possible to describe the large time behavior for the semigroup generated by a complex second-order operator with the aid of homogenization theory and to present an asymptotic expansion. Further, the text goes beyond the classical homogenization theory by converting an analytical problem into an algebraic one.

This work is aimed at graduate students as well as researchers in the above areas. Prerequisites include knowledge of basic results from semigroup theory and Lie group theory.

Arvustused

"The book is written in a very concise, clear, and elegant way. Misprints are rare There are no exercises, but the book is well equipped with examples, which help to understand the assertions and are, as a rule, of independent interest. To sum up, the text presents an extremely interesting account of some of the most important developments in the chosen direction."





MATHEMATICAL REVIEWS



"The boal of the book under review is to present a method for examing the surprising connection between invariant differential operators and almost periodic operators on Lie groups with polynomial growth. . . The book is deveoted to a very interesting topic.  It is aimed to graduate studetns as well as researchers, and it can be highly recommended."



---ZAA

Muu info

Springer Book Archives
I Introduction.- II General Formalism.- II.1 Lie groups and Lie
algebras.- II.2 Subelliptic operators.- II.3 Subelliptic kernels.- II.4
Growth properties.- II.5 Real operators.- II.6 Local bounds on kernels.- II.7
Compact groups.- II.8 Transference method.- II.9 Nilpotent groups.- II.10 De
Giorgi estimates.- II.11 Almost periodic functions.- II.12 Interpolation.-
Notes and Remarks.- III Structure Theory.- III.1 Complementary subspaces.-
III.2 The nilshadow; algebraic structure.- III.3 Uniqueness of the
nilshadow.- III.4 Near-nilpotent ideals.- III.5 Stratified nilshadow.- III.6
Twisted products.- III.7 The nilshadow; analytic structure.- Notes and
Remarks.- IV Homogenization and Kernel Bounds.- IV.1 Subelliptic operators.-
IV.2 Scaling.- IV.3 Homogenization; correctors.- IV.4 Homogenized operators.-
IV.5 Homogenization; convergence.- IV.6 Kernel bounds; stratified nilshadow.-
IV.7 Kernel bounds; general case.- Notes and Remarks.- V Global Derivatives.-
V.1 L2-bounds.- V.2 Gaussian bounds.- V.3 Anomalous behaviour.- Notes and
Remarks.- VI Asymptotics.- VI. 1 Asymptotics of semigroups.- VI.2 Asymptotics
of derivatives.- Notes and Remarks.- Appendices.- A.1 De Giorgi estimates.-
A.2 Morrey and Campanato spaces.- A.3 Proof of Theorem II.10.5.- A.4 Rellich
lemma.- Notes and Remarks.- References.- Index of Notation.