|
|
xiii | |
|
|
xv | |
Preface |
|
xvii | |
Author Bios |
|
xxi | |
Contributors |
|
xxiii | |
Acknowledgment |
|
xxv | |
|
|
1 | (4) |
|
|
1 | (1) |
|
|
2 | (3) |
|
2 Examples and Organization of The Book |
|
|
5 | (12) |
|
2.1 Examples for Longitudinal Studies |
|
|
5 | (9) |
|
|
5 | (1) |
|
|
5 | (2) |
|
|
7 | (1) |
|
|
8 | (3) |
|
2.1.5 Schizophrenia Study |
|
|
11 | (1) |
|
|
11 | (1) |
|
2.1.7 Labor Market Experience |
|
|
11 | (2) |
|
|
13 | (1) |
|
2.2 Organization of the Book |
|
|
14 | (3) |
|
3 Model Framework and Its Components |
|
|
17 | (20) |
|
3.1 Distributional Theory |
|
|
17 | (4) |
|
3.1.1 Linear Exponential Distribution Family |
|
|
18 | (2) |
|
3.1.2 Quadratic Exponential Distribution Family |
|
|
20 | (1) |
|
3.1.3 Tilted Exponential Family |
|
|
20 | (1) |
|
|
21 | (1) |
|
|
22 | (1) |
|
3.4 GLM and Mean Functions |
|
|
23 | (4) |
|
|
27 | (1) |
|
3.6 Modeling the Variance |
|
|
28 | (3) |
|
3.7 Modeling the Correlation |
|
|
31 | (4) |
|
3.8 Random Effects Models |
|
|
35 | (2) |
|
|
37 | (38) |
|
|
38 | (1) |
|
4.2 Quasi-likelihood Approach |
|
|
39 | (2) |
|
|
41 | (3) |
|
4.4 Generalized Estimating Equations (GEE) |
|
|
44 | (28) |
|
4.4.1 Estimation of Mean Parameters β |
|
|
45 | (3) |
|
4.4.2 Estimation of Variance Parameters τ |
|
|
48 | (1) |
|
4.4.2.1 Gaussian Estimation |
|
|
48 | (1) |
|
4.4.2.2 Extended Quasi-likelihood |
|
|
49 | (1) |
|
4.4.2.3 Nonlinear Regression |
|
|
50 | (1) |
|
4.4.2.4 Estimation of Scale Parameter φ |
|
|
50 | (1) |
|
4.4.3 Estimation of Correlation Parameters |
|
|
51 | (1) |
|
4.4.3.1 Stationary Correlation Structures |
|
|
51 | (3) |
|
4.4.3.2 Generalized Markov Correlation Structure |
|
|
54 | (1) |
|
4.4.3.3 Second Moment Method |
|
|
55 | (1) |
|
4.4.3.4 Gaussian Estimation |
|
|
55 | (2) |
|
4.4.3.5 Quasi Least-squares |
|
|
57 | (1) |
|
4.4.3.6 Conditional Residual Method |
|
|
58 | (1) |
|
4.4.3.7 Cholesky Decomposition |
|
|
59 | (4) |
|
4.4.4 Covariance Matrix of β |
|
|
63 | (3) |
|
4.4.5 Example: Epileptic Data |
|
|
66 | (2) |
|
|
68 | (4) |
|
4.5 Quadratic Inference Function |
|
|
72 | (3) |
|
|
75 | (14) |
|
|
75 | (1) |
|
|
76 | (3) |
|
5.2.1 Quasi-likelihood Criterion |
|
|
76 | (2) |
|
5.2.2 Gaussian Likelihood Criterion |
|
|
78 | (1) |
|
5.3 Selecting Correlation Structure |
|
|
79 | (3) |
|
|
79 | (1) |
|
|
79 | (1) |
|
5.3.3 Empirical Likelihood Criteria |
|
|
80 | (2) |
|
|
82 | (7) |
|
5.4.1 Examples for Variable Selection |
|
|
82 | (1) |
|
5.4.2 Examples for Correlation Structure Selection |
|
|
82 | (7) |
|
|
89 | (22) |
|
|
89 | (1) |
|
|
89 | (8) |
|
6.2.1 An Independence Working Model |
|
|
89 | (1) |
|
|
90 | (2) |
|
|
92 | (1) |
|
6.2.4 A Method Based on GEE |
|
|
93 | (1) |
|
6.2.5 Pediatric Pain Tolerance Study |
|
|
94 | (3) |
|
|
97 | (8) |
|
6.3.1 An Independence Working Model |
|
|
98 | (1) |
|
6.3.2 A Weighted Method Based on GEE |
|
|
99 | (1) |
|
6.3.3 Modeling Correlation Matrix via Gaussian Copulas |
|
|
99 | (1) |
|
6.3.3.1 Constructing Estimating Functions |
|
|
100 | (1) |
|
6.3.3.2 Parameter and Covariance Matrix Estimation |
|
|
101 | (2) |
|
6.3.4 Working Correlation Structure Selection |
|
|
103 | (1) |
|
6.3.5 Analysis of Dental Data |
|
|
103 | (2) |
|
|
105 | (6) |
|
6.4.1 Score Function and Weighted Function |
|
|
106 | (1) |
|
|
107 | (1) |
|
6.4.3 Choice of Tuning Parameters |
|
|
108 | (3) |
|
7 Clustered Data Analysis |
|
|
111 | (24) |
|
|
111 | (2) |
|
|
111 | (1) |
|
7.1.2 Intracluster Correlation |
|
|
112 | (1) |
|
7.2 Analysis of Clustered Data: Continuous Responses |
|
|
113 | (12) |
|
7.2.1 Inference for Intraclass Correlation from One-way Analysis of Variance |
|
|
113 | (2) |
|
7.2.2 Inference for Intracluster Correlation from More General Settings |
|
|
115 | (2) |
|
7.2.3 Maximum Likelihood Estimation of the Parameters |
|
|
117 | (3) |
|
7.2.4 Asymptotic Variance |
|
|
120 | (1) |
|
7.2.5 Inference for Intracluster Correlation Coefficient |
|
|
121 | (1) |
|
7.2.6 Analysis of Clustered or Intralitter Data: Discrete Responses |
|
|
122 | (1) |
|
|
122 | (1) |
|
|
123 | (2) |
|
|
125 | (1) |
|
|
125 | (1) |
|
7.4 Regression Models for Multilevel Clustered Data |
|
|
126 | (1) |
|
7.5 Two-Level Linear Models |
|
|
126 | (1) |
|
7.6 An Example: Developmental Toxicity Study of Ethylene Glycol |
|
|
127 | (2) |
|
7.7 Two-Level Generalized Linear Model |
|
|
129 | (2) |
|
|
131 | (4) |
|
7.8.1 National Cooperative Gallstone Study |
|
|
132 | (1) |
|
|
133 | (2) |
|
|
135 | (36) |
|
|
135 | (1) |
|
8.2 Missing Data Mechanism |
|
|
135 | (2) |
|
8.3 Missing Data Patterns |
|
|
137 | (2) |
|
8.4 Missing Data Methodologies |
|
|
139 | (8) |
|
8.4.1 Missing Data Methodologies: The Methods of Imputation |
|
|
140 | (1) |
|
8.4.1.1 Last Value Carried Forward Imputation |
|
|
140 | (1) |
|
8.4.1.2 Imputation by Related Observation |
|
|
140 | (1) |
|
8.4.1.3 Imputation by Unconditional Mean |
|
|
140 | (1) |
|
8.4.1.4 Imputation by Conditional Mean |
|
|
140 | (1) |
|
8.4.1.5 Hot Deck Imputation |
|
|
140 | (1) |
|
8.4.1.6 Cold Deck Imputation |
|
|
141 | (1) |
|
8.4.1.7 Imputation by Substitution |
|
|
141 | (1) |
|
8.4.1.8 Regression Imputation |
|
|
141 | (1) |
|
8.4.2 Missing Data Methodologies: Likelihood Methods |
|
|
141 | (6) |
|
8.5 Analysis of Zero-inflated Count Data With Missing Values |
|
|
147 | (8) |
|
8.5.1 Estimation of the Parameters with No Missing Data |
|
|
148 | (1) |
|
8.5.2 Estimation of the Parameters with Missing Responses |
|
|
149 | (1) |
|
8.5.2.1 Estimation under MCAR |
|
|
149 | (1) |
|
8.5.2.2 Estimation under MAR |
|
|
150 | (3) |
|
8.5.2.3 Estimation under MNAR |
|
|
153 | (2) |
|
8.6 Analysis of Longitudinal Data With Missing Values |
|
|
155 | (16) |
|
8.6.1 Normally Distributed Data |
|
|
155 | (2) |
|
8.6.2 Complete-data Estimation via the EM |
|
|
157 | (3) |
|
8.6.3 Estimation with Nonignorable Missing Response Data (MAR and MNAR) |
|
|
160 | (4) |
|
8.6.4 Generalized Estimating Equations |
|
|
164 | (1) |
|
|
164 | (1) |
|
8.6.4.2 Weighted GEE for MAR Data |
|
|
164 | (1) |
|
8.6.5 Some Applications of the Weighted GEE |
|
|
165 | (1) |
|
8.6.5.1 Weighted GEE for Binary Data |
|
|
165 | (1) |
|
8.6.5.2 Two Modifications |
|
|
166 | (5) |
|
9 Random Effects and Transitional Models |
|
|
171 | (18) |
|
|
171 | (1) |
|
9.2 Random Intercept Models |
|
|
172 | (1) |
|
9.3 Linear Mixed Effects models |
|
|
173 | (3) |
|
9.4 Generalized Linear Mixed Effects Models |
|
|
176 | (5) |
|
9.4.1 The Logistic Random Effects Models |
|
|
176 | (1) |
|
9.4.2 The Binomial Random Effects Models |
|
|
177 | (1) |
|
9.4.3 The Poisson Random Effects Models |
|
|
177 | (3) |
|
9.4.4 Examples: Estimation for European Red Mites Data and the Ames Salmonella Assay Data |
|
|
180 | (1) |
|
|
181 | (3) |
|
9.6 Fitting Transition Models |
|
|
184 | (1) |
|
9.7 Transition Model for Categorical Data |
|
|
185 | (3) |
|
|
188 | (1) |
|
10 Handing High Dimensional Longitudinal Data |
|
|
189 | (12) |
|
|
189 | (1) |
|
|
190 | (3) |
|
|
190 | (2) |
|
10.2.2 Penalized Robust GEE-type Methods |
|
|
192 | (1) |
|
10.3 Smooth-threshold Method |
|
|
193 | (2) |
|
|
195 | (1) |
|
|
196 | (5) |
Bibliography |
|
201 | (16) |
Author Index |
|
217 | (6) |
Subject Index |
|
223 | |