Muutke küpsiste eelistusi

E-raamat: Analysis with Ultrasmall Numbers

, , (City College of New York, USA)
  • Formaat: 316 pages
  • Sari: Textbooks in Mathematics
  • Ilmumisaeg: 01-Dec-2014
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781498702669
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 74,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 316 pages
  • Sari: Textbooks in Mathematics
  • Ilmumisaeg: 01-Dec-2014
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781498702669
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Analysis with Ultrasmall Numbers presents an intuitive treatment of mathematics using ultrasmall numbers. With this modern approach to infinitesimals, proofs become simpler and more focused on the combinatorial heart of arguments, unlike traditional treatments that use epsilon–delta methods. Students can fully prove fundamental results, such as the Extreme Value Theorem, from the axioms immediately, without needing to master notions of supremum or compactness.

The book is suitable for a calculus course at the undergraduate or high school level or for self-study with an emphasis on nonstandard methods. The first part of the text offers material for an elementary calculus course while the second part covers more advanced calculus topics.

The text provides straightforward definitions of basic concepts, enabling students to form good intuition and actually prove things by themselves. It does not require any additional "black boxes" once the initial axioms have been presented. The text also includes numerous exercises throughout and at the end of each chapter.

Arvustused

"This book presents an alternative approach to differential and integral calculus of functions of one variable. For readers familiar with the classical methods of mathematical analysis, this book can provide an interesting alternative view." Zentralblatt MATH 1317

"What the book does exceptionally well is explain and develop the basic notions and machinery slowly, invitingly, methodically, and enjoyably. Numerous solved exercises make the book highly efficient in learning the nonstandard technique it advocates but also for learning the elements of calculus the book is a well-aimed stab at the heart of the teaching of analysis and presents a very interesting nonstandard approach. Any student intrigued by the subject of nonstandard analysis will find the book to be entertaining and well-written, and to present a coherent approach at a very elementary level." MAA Reviews, March 2015

Preface xi
Preface for Students xix
Acknowledgments xxv
Authors xxvii
I Elementary Analysis
1(140)
1 Basic Concepts
3(34)
1.1 Introduction
3(4)
1.2 Observability
7(2)
1.3 First Principles
9(6)
1.4 Closure
15(7)
1.5 Relativization and Stability
22(8)
1.6 Sets and Induction
30(2)
1.7 Summary
32(1)
1.8 Additional Exercises
33(4)
2 Continuity and Limits
37(30)
2.1 Continuity
37(5)
2.2 Properties of Continuous Functions
42(6)
2.3 Limits
48(7)
2.4 Exponential and Logarithmic Functions
55(6)
2.5 Additional Exercises
61(6)
3 Differentiability
67(32)
3.1 Derivative
67(5)
3.2 Rules of Differentiation
72(6)
3.3 Basic Theorems about Derivatives
78(4)
3.4 Smooth Functions
82(1)
3.5 Derivatives of Trigonometric Functions
83(5)
3.6 Second Order Derivatives
88(6)
3.7 Additional Exercises
94(5)
4 Integration of Continuous Functions
99(42)
4.1 Fundamental Theorem of Calculus
99(8)
4.2 Antiderivatives
107(2)
4.3 Rules of Integration
109(3)
4.4 Geometric Interpretation of Integrals
112(3)
4.5 Applications of the Integral
115(6)
4.6 Natural Logarithm and Exponential
121(6)
4.7 Numerical Integration
127(5)
4.8 Improper Integrals
132(5)
4.9 Additional Exercises
137(4)
II Higher Analysis
141(98)
5 Basic Concepts Revisited
143(12)
5.1 Real and Natural Numbers
143(4)
5.2 Epsilon-Delta Method
147(3)
5.3 Alternative Characterization of Limits
150(2)
5.4 Additional Exercises
152(3)
6 L'Hopital's Rule and Higher Order Derivatives
155(8)
6.1 L'Hopital's Rule
155(3)
6.2 Higher Order Derivatives
158(3)
6.3 Additional Exercises
161(2)
7 Sequences and Series
163(30)
7.1 Sequences
163(5)
7.2 Series
168(9)
7.3 Taylor Series
177(6)
7.4 Uniform Convergence
183(2)
7.5 Power Series
185(3)
7.6 Additional Exercises
188(5)
8 First Order Differential Equations
193(12)
8.1 Solutions of Some Differential Equations
193(3)
8.2 Existence and Uniqueness
196(4)
8.3 Additional Exercises
200(5)
9 Integration
205(16)
9.1 Riemann Integral
205(9)
9.2 Darboux Integral
214(3)
9.3 Additional Exercises
217(4)
10 Topology of Real Numbers
221(18)
10.1 Open and Closed Sets
221(8)
10.2 Dense Sets
229(2)
10.3 Compact Sets
231(4)
10.4 Additional Exercises
235(4)
Answers to Exercises 239(28)
Appendix: Foundations and Relative Set Theory 267(20)
Bibliography 287(4)
Index 291
Karel Hrbacek, Olivier Lessmann, Richard O'Donovan