|
|
xv | |
|
|
xix | |
Preface |
|
xxi | |
|
|
1 | (18) |
|
|
1 | (1) |
|
1.2 Motivating Functional Data |
|
|
1 | (15) |
|
|
2 | (1) |
|
1.2.2 Berkeley Growth Curve Data |
|
|
3 | (3) |
|
1.2.3 Nitrogen Oxide Emission Level Data |
|
|
6 | (1) |
|
1.2.4 Canadian Temperature Data |
|
|
6 | (3) |
|
|
9 | (2) |
|
|
11 | (1) |
|
|
11 | (2) |
|
|
13 | (3) |
|
1.3 Why Is Functional Data Analysis Needed? |
|
|
16 | (1) |
|
|
17 | (1) |
|
1.5 Implementation of Methodologies |
|
|
17 | (1) |
|
1.6 Options for Reading This Book |
|
|
18 | (1) |
|
1.7 Bibliographical Notes |
|
|
18 | (1) |
|
2 Nonparametric Smoothers for a Single Curve |
|
|
19 | (28) |
|
|
19 | (1) |
|
2.2 Local Polynomial Kernel Smoothing |
|
|
20 | (8) |
|
2.2.1 Construction of an LPK Smoother |
|
|
20 | (2) |
|
2.2.2 Two Special LPK Smoothers |
|
|
22 | (2) |
|
2.2.3 Selecting a Good Bandwidth |
|
|
24 | (2) |
|
2.2.4 Robust LPK Smoothing |
|
|
26 | (2) |
|
|
28 | (7) |
|
2.3.1 Truncated Power Basis |
|
|
29 | (1) |
|
2.3.2 Regression Spline Smoother |
|
|
30 | (1) |
|
2.3.3 Knot Locating and Knot Number Selection |
|
|
30 | (4) |
|
2.3.4 Robust Regression Splines |
|
|
34 | (1) |
|
|
35 | (5) |
|
2.4.1 Smoothing Spline Smoothers |
|
|
35 | (1) |
|
2.4.2 Cubic Smoothing Splines |
|
|
36 | (1) |
|
2.4.3 Smoothing Parameter Selection |
|
|
37 | (3) |
|
|
40 | (4) |
|
|
40 | (1) |
|
2.5.2 Smoothing Parameter Selection |
|
|
41 | (3) |
|
2.6 Concluding Remarks and Bibliographical Notes |
|
|
44 | (3) |
|
3 Reconstruction of Functional Data |
|
|
47 | (36) |
|
|
47 | (2) |
|
3.2 Reconstruction Methods |
|
|
49 | (12) |
|
3.2.1 Individual Function Estimators |
|
|
49 | (1) |
|
3.2.2 Smoothing Parameter Selection |
|
|
50 | (1) |
|
|
50 | (4) |
|
3.2.4 Regression Spline Reconstruction |
|
|
54 | (3) |
|
3.2.5 Smoothing Spline Reconstruction |
|
|
57 | (2) |
|
3.2.6 P-Spline Reconstruction |
|
|
59 | (2) |
|
3.3 Accuracy of LPK Reconstructions |
|
|
61 | (7) |
|
3.3.1 Mean and Covariance Function Estimation |
|
|
63 | (2) |
|
3.3.2 Noise Variance Function Estimation |
|
|
65 | (1) |
|
3.3.3 Effect of LPK Smoothing |
|
|
66 | (1) |
|
|
66 | (2) |
|
3.4 Accuracy of LPK Reconstruction in FLMs |
|
|
68 | (6) |
|
3.4.1 Coefficient Function Estimation |
|
|
69 | (1) |
|
3.4.2 Significance Tests of Covariate Effects |
|
|
70 | (2) |
|
3.4.3 A Real Data Example |
|
|
72 | (2) |
|
|
74 | (6) |
|
3.6 Concluding Remarks and Bibliographical Notes |
|
|
80 | (1) |
|
|
81 | (2) |
|
|
83 | (46) |
|
|
83 | (1) |
|
|
83 | (9) |
|
|
85 | (1) |
|
|
86 | (2) |
|
4.2.3 Linear Forms of Stochastic Processes |
|
|
88 | (1) |
|
4.2.4 Quadratic Forms of Stochastic Processes |
|
|
88 | (3) |
|
4.2.5 Central Limit Theorems for Stochastic Processes |
|
|
91 | (1) |
|
|
92 | (8) |
|
|
93 | (1) |
|
4.3.2 Distribution Approximation |
|
|
94 | (6) |
|
|
100 | (7) |
|
4.4.1 Distribution Approximation |
|
|
101 | (6) |
|
4.5 One-Sample Problem for Functional Data |
|
|
107 | (12) |
|
|
109 | (2) |
|
|
111 | (3) |
|
|
114 | (1) |
|
|
115 | (1) |
|
4.5.5 Numerical Implementation |
|
|
116 | (3) |
|
4.5.6 Effect of Resolution Number |
|
|
119 | (1) |
|
|
119 | (7) |
|
4.7 Concluding Remarks and Bibliographical Notes |
|
|
126 | (1) |
|
|
127 | (2) |
|
5 ANOVA for Functional Data |
|
|
129 | (68) |
|
|
129 | (1) |
|
|
129 | (13) |
|
5.2.1 Pivotal Test Function |
|
|
133 | (1) |
|
5.2.2 Methods for Two-Sample Problems |
|
|
134 | (8) |
|
|
142 | (22) |
|
5.3.1 Estimation of Group Mean and Covariance Functions |
|
|
145 | (3) |
|
|
148 | (12) |
|
5.3.3 Tests of Linear Hypotheses |
|
|
160 | (4) |
|
|
164 | (26) |
|
5.4.1 Estimation of Cell Mean and Covariance Functions |
|
|
166 | (3) |
|
5.4.2 Main and Interaction Effect Functions |
|
|
169 | (2) |
|
5.4.3 Tests of Linear Hypotheses |
|
|
171 | (7) |
|
5.4.4 Balanced Two-Way ANOVA with Interaction |
|
|
178 | (6) |
|
5.4.5 Balanced Two-Way ANOVA without Interaction |
|
|
184 | (6) |
|
|
190 | (5) |
|
5.6 Concluding Remarks and Bibliographical Notes |
|
|
195 | (1) |
|
|
196 | (1) |
|
6 Linear Models with Functional Responses |
|
|
197 | (44) |
|
|
197 | (1) |
|
6.2 Linear Models with Time-Independent Covariates |
|
|
197 | (24) |
|
6.2.1 Coefficient Function Estimation |
|
|
200 | (2) |
|
6.2.2 Properties of the Estimators |
|
|
202 | (2) |
|
6.2.3 Multiple Correlation Coefficient |
|
|
204 | (1) |
|
6.2.4 Comparing Two Nested FLMs |
|
|
205 | (6) |
|
6.2.5 Significance of All the Non-Intercept Coefficient Functions |
|
|
211 | (1) |
|
6.2.6 Significance of a Single Coefficient Function |
|
|
212 | (2) |
|
6.2.7 Tests of Linear Hypotheses |
|
|
214 | (4) |
|
|
218 | (3) |
|
6.3 Linear Models with Time-Dependent Covariates |
|
|
221 | (11) |
|
6.3.1 Estimation of the Coefficient Functions |
|
|
221 | (1) |
|
6.3.2 Compare Two Nested FLMs |
|
|
222 | (6) |
|
6.3.3 Tests of Linear Hypotheses |
|
|
228 | (4) |
|
|
232 | (4) |
|
6.5 Concluding Remarks and Bibliographical Notes |
|
|
236 | (2) |
|
|
238 | (3) |
|
7 Ill-Conditioned Functional Linear Models |
|
|
241 | (32) |
|
|
241 | (4) |
|
7.2 Generalized Inverse Method |
|
|
245 | (14) |
|
7.2.1 Estimability of Regression Coefficient Functions |
|
|
245 | (2) |
|
7.2.2 Methods for Finding Estimable Linear Functions |
|
|
247 | (5) |
|
7.2.3 Estimation of Estimable Linear Functions |
|
|
252 | (1) |
|
7.2.4 Tests of Testable Linear Hypotheses |
|
|
253 | (6) |
|
7.3 Reparameterization Method |
|
|
259 | (2) |
|
|
259 | (1) |
|
7.3.2 Determining the Reparameterization Matrices |
|
|
259 | (1) |
|
7.3.3 Invariance of the Reparameterization |
|
|
260 | (1) |
|
7.3.4 Tests of Testable Linear Hypotheses |
|
|
261 | (1) |
|
7.4 Side-Condition Method |
|
|
261 | (5) |
|
|
261 | (1) |
|
7.4.2 Methods for Specifying the Side-Conditions |
|
|
262 | (1) |
|
7.4.3 Invariance of the Side-Condition Method |
|
|
263 | (1) |
|
7.4.4 Tests of Testable Linear Hypotheses |
|
|
264 | (2) |
|
|
266 | (5) |
|
7.6 Concluding Remarks and Bibliographical Notes |
|
|
271 | (1) |
|
|
271 | (2) |
|
8 Diagnostics of Functional Observations |
|
|
273 | (34) |
|
|
273 | (3) |
|
|
276 | (3) |
|
8.2.1 Raw Residual Functions |
|
|
276 | (1) |
|
8.2.2 Standardized Residual Functions |
|
|
277 | (1) |
|
8.2.3 Jackknife Residual Functions |
|
|
277 | (2) |
|
8.3 Functional Outlier Detection |
|
|
279 | (12) |
|
8.3.1 Standardized Residual-Based Method |
|
|
279 | (4) |
|
8.3.2 Jackknife Residual-Based Method |
|
|
283 | (2) |
|
8.3.3 Functional Depth-Based Method |
|
|
285 | (6) |
|
8.4 Influential Case Detection |
|
|
291 | (1) |
|
8.5 Robust Estimation of Coefficient Functions |
|
|
292 | (1) |
|
8.6 Outlier Detection for a Sample of Functions |
|
|
293 | (5) |
|
|
293 | (1) |
|
8.6.2 Functional Outlier Detection |
|
|
294 | (4) |
|
|
298 | (1) |
|
8.8 Concluding Remarks and Bibliographical Notes |
|
|
298 | (1) |
|
|
299 | (8) |
|
9 Heteroscedastic ANOVA for Functional Data |
|
|
307 | (44) |
|
|
307 | (1) |
|
9.2 Two-Sample Behrens-Fisher Problems |
|
|
308 | (10) |
|
9.2.1 Estimation of Mean and Covariance Functions |
|
|
310 | (2) |
|
|
312 | (6) |
|
9.3 Heteroscedastic One-Way ANOVA |
|
|
318 | (12) |
|
9.3.1 Estimation of Group Mean and Covariance Functions |
|
|
320 | (2) |
|
9.3.2 Heteroscedastic Main-Effect Test |
|
|
322 | (7) |
|
9.3.3 Tests of Linear Hypotheses under Heteroscedasticity |
|
|
329 | (1) |
|
9.4 Heteroscedastic Two-Way ANOVA |
|
|
330 | (14) |
|
9.4.1 Estimation of Cell Mean and Covariance Functions |
|
|
335 | (2) |
|
9.4.2 Tests of Linear Hypotheses under Heteroscedasticity |
|
|
337 | (7) |
|
|
344 | (4) |
|
9.6 Concluding Remarks and Bibliographical Notes |
|
|
348 | (1) |
|
|
348 | (3) |
|
10 Test of Equality of Covariance Functions |
|
|
351 | (18) |
|
|
351 | (1) |
|
|
351 | (5) |
|
10.2.1 Pivotal Test Function |
|
|
352 | (2) |
|
|
354 | (2) |
|
|
356 | (8) |
|
10.3.1 Estimation of Group Mean and Covariance Functions |
|
|
358 | (2) |
|
|
360 | (4) |
|
|
364 | (2) |
|
10.5 Concluding Remarks and Bibliographical Notes |
|
|
366 | (1) |
|
|
366 | (3) |
Bibliography |
|
369 | (12) |
Index |
|
381 | |