Muutke küpsiste eelistusi

E-raamat: Analytic Function Theory of Several Variables: Elements of Oka's Coherence

  • Formaat: PDF+DRM
  • Ilmumisaeg: 16-Aug-2016
  • Kirjastus: Springer Verlag, Singapore
  • Keel: eng
  • ISBN-13: 9789811002915
  • Formaat - PDF+DRM
  • Hind: 80,26 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 16-Aug-2016
  • Kirjastus: Springer Verlag, Singapore
  • Keel: eng
  • ISBN-13: 9789811002915

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The purpose of this book is to present the classical analytic function theory of several variables as a standard subject in a course of mathematics after learning the elementary materials (sets, general topology, algebra, one complex variable). This includes the essential parts of GrauertRemmert's two volumes, GL227(236) (Theory of Stein spaces) and GL265 (Coherent analytic sheaves) with a lowering of the level for novice graduate students (here, Grauert's direct image theorem is limited to the case of finite maps).The core of the theory is "Oka's Coherence", found and proved by Kiyoshi Oka. It is indispensable, not only in the study of complex analysis and complex geometry, but also in a large area of modern mathematics. In this book, just after an introductory chapter on holomorphic functions (Chap. 1), we prove Oka's First Coherence Theorem for holomorphic functions in Chap. 2. This defines a unique character of the book compared with other books on this subject, in which the notion of coherence appears much later.The present book, consisting of nine chapters, gives complete treatments of the following items: Coherence of sheaves of holomorphic functions (Chap. 2); OkaCartan's Fundamental Theorem (Chap. 4); Coherence of ideal sheaves of complex analytic subsets (Chap. 6); Coherence of the normalization sheaves of complex spaces (Chap. 6); Grauert's Finiteness Theorem (Chaps. 7, 8); Oka's Theorem for Riemann domains (Chap. 8). The theories of sheaf cohomology and domains of holomorphy are also presented (Chaps. 3, 5). Chapter 6 deals with the theory of complex analytic subsets. Chapter 8 is devoted to the applications of formerly obtained results, proving CartanSerre's Theorem and Kodaira's Embedding Theorem. In Chap. 9, we discuss the historical development of "Coherence".It is difficult to find a book at this level that treats all of the above subjects in a completely self-contained manner. In the present volume, a number of classical proofs are improved and simplified, so that the contents are easily accessible for beginning graduate students.

Arvustused

The book is extremely readable and yet detailed and clear. Its novel viewpoint on Okas theory, essentially inverting the order in which the main theorems are proved, will certainly benefit beginning graduate students who are interested in several complex variables. This book is destined to become a classic on the topic of coherence in complex analysis. (Valentino Tosatti, zbMATH 1380.32001, 2018)

1 Holomorphic Functions
1(32)
1.1 Holomorphic Functions of One Variable
1(5)
1.2 Holomorphic Functions of Several Variables
6(16)
1.2.1 Definitions
6(5)
1.2.2 Montel's Theorem
11(1)
1.2.3 Approximation Theorem
12(1)
1.2.4 Analytic Continuation
13(4)
1.2.5 Implicit Function Theorem
17(5)
1.3 Sheaves
22(11)
1.3.1 Definition of Sheaves
22(2)
1.3.2 Presheaves
24(4)
1.3.3 Examples of Sheaves
28(5)
2 Oka's First Coherence Theorem
33(32)
2.1 Weierstrass' Preparation Theorem
33(7)
2.2 Local Rings
40(7)
2.2.1 Preparations from Algebra
40(4)
2.2.2 Properties of O n,a
44(3)
2.3 Analytic Subsets
47(2)
2.4 Coherent Sheaves
49(5)
2.5 Oka's First Coherence Theorem
54(11)
Historical Supplements
61(4)
3 Sheaf Cohomology
65(46)
3.1 Exact Sequences
65(2)
3.2 Tensor Product
67(3)
3.2.1 Tensor Product
67(1)
3.2.2 Tensor Product of Sheaves
68(2)
3.3 Exact Sequences of Coherent Sheaves
70(4)
3.4 Sheaf Cohomology
74(17)
3.4.1 Cech cohomology
74(6)
3.4.2 Long Exact Sequences
80(5)
3.4.3 Resolutions of Sheaves and Cohomology
85(6)
3.5 De Rham Cohomology
91(9)
3.5.1 Differential Forms and Exterior Products
92(1)
3.5.2 Real Domains
93(4)
3.5.3 Complex Domains
97(3)
3.6 Dolbeault Cohomology
100(6)
3.7 Cousin Problems
106(5)
3.7.1 Cousin I Problem
106(1)
3.7.2 Cousin II Problem
107(2)
Historical Supplements
109(2)
4 Holomorphically Convex Domains and the Oka-Cartan Fundamental Theorem
111(44)
4.1 Holomorphically Convex Domains
111(4)
4.2 Cartan's Merging Lemma
115(8)
4.3 Oka's Fundamental Lemma
123(12)
4.3.1 Steps of Proof
123(3)
4.3.2 Oka's Syzygies
126(3)
4.3.3 Oka's Fundamental Lemma
129(6)
4.4 Oka--Cartan Fundamental Theorem
135(12)
4.5 Oka--Cartan Fundamental Theorem on Stein Manifolds
147(8)
4.5.1 Complex Manifolds
147(2)
4.5.2 Complex Manifolds
149(1)
4.5.3 Stein Manifolds
150(2)
4.5.4 Influence on Other Fields
152(3)
5 Domains of Holomorphy
155(48)
5.1 Envelope of Holomorphy
155(5)
5.2 Reinhardt Domains
160(9)
5.3 Domains of Holomorphy and Holomorphically Convex Domains
169(6)
5.4 Domains of Holomorphy and Exhaustion Sequences
175(8)
5.5 Cousin Problems and Oka Principle
183(20)
5.5.1 Cousin I Problem
183(2)
5.5.2 Cousin II Problem
185(4)
5.5.3 Oka Principle
189(5)
5.5.4 Hermitian Holomorphic Line Bundles
194(4)
5.5.5 Stein's Example of Non-solvable Cousin II Distribution
198(3)
Historical Supplements
201(2)
6 Analytic Sets and Complex Spaces
203(78)
6.1 Preparations
203(5)
6.1.1 Algebraic Sets
203(2)
6.1.2 Analytic Sets
205(1)
6.1.3 Regular Points and Singular Points
206(1)
6.1.4 Finite Maps
207(1)
6.2 Germs of Analytic Sets
208(6)
6.3 Prerequisite from Algebra
214(3)
6.4 Ideals of Local Rings
217(14)
6.5 Oka's Second Coherence Theorem
231(8)
6.5.1 Geometric Ideal Sheaves
231(4)
6.5.2 Singularity Sets
235(2)
6.5.3 Hartogs' Extension Theorem
237(1)
6.5.4 Coherent Sheaves over Analytic Sets
237(2)
6.6 Irreducible Decompositions of Analytic Sets
239(4)
6.7 Finite Holomorphic Maps
243(9)
6.8 Continuation of Analytic Subsets
252(3)
6.9 Complex Spaces
255(4)
6.10 Normal Complex Spaces and Oka's Third Coherence Theorem
259(12)
6.10.1 Normal Complex Space
259(3)
6.10.2 Universal Denominators
262(4)
6.10.3 Analyticity of Non-normal Points
266(2)
6.10.4 Oka's Normalization and Third Coherence Theorem
268(3)
6.11 Singularities of Normal Complex Spaces
271(5)
6.11.1 Rank of Maximal Ideals
271(2)
6.11.2 Higher Codimension of the Singularity Sets of Normal Complex Spaces
273(3)
6.12 Stein Spaces and Oka--Cartan Fundamental Theorem
276(5)
Historical Supplements
278(3)
7 Pseudoconvex Domains and Oka's Theorem
281(62)
7.1 Plurisubharmonic Functions
281(20)
7.1.1 Subharmonic Functions
281(12)
7.1.2 Plurisubharmonic Functions
293(8)
7.2 Pseudoconvex Domains
301(5)
7.3 L. Schwartz's Finiteness Theorem
306(10)
7.3.1 Topological Vector Spaces
306(3)
7.3.2 Frechet Spaces
309(2)
7.3.3 Banach's Open Mapping Theorem
311(2)
7.3.4 L. Schwartz's Finiteness Theorem
313(3)
7.4 Oka's Theorem
316(7)
7.5 Oka's Theorem on Riemann Domains
323(20)
7.5.1 Riemann Domains
323(3)
7.5.2 Pseudoconvexity
326(6)
7.5.3 Strongly Pseudoconvex Domains
332(7)
Historical Supplements
339(4)
8 Cohomology of Coherent Sheaves and Kodaira's Embedding Theorem
343(24)
8.1 Topology of the Space of Sections of a Coherent Sheaf
343(11)
8.1.1 Domains of Cn
343(5)
8.1.2 Complex Manifolds
348(1)
8.1.3 Complex Spaces
349(5)
8.2 Cartan--Serre Theorem
354(1)
8.3 Positive Line Bundles and Hodge Manifolds
354(4)
8.4 Grauert's Theorem
358(3)
8.4.1 Strongly Pseudoconvex Domains
358(1)
8.4.2 Positive Line Bundles
359(2)
8.5 Kodaira's Embedding Theorem
361(6)
9 On Coherence
367(8)
Appendix: Kiyoshi Oka 375(8)
References 383(4)
Index 387(6)
Symbols 393