Muutke küpsiste eelistusi

E-raamat: Analytical Mechanics: An Introduction

Translated by (Department of Mathematics, University of Reading), (Scuola Normale Superiore, Pisa), (Dipartimento di Matematica, Universita di Firenze)
  • Formaat: PDF+DRM
  • Sari: Oxford Graduate Texts
  • Ilmumisaeg: 06-Apr-2006
  • Kirjastus: Oxford University Press
  • Keel: eng
  • ISBN-13: 9780191513596
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Oxford Graduate Texts
  • Ilmumisaeg: 06-Apr-2006
  • Kirjastus: Oxford University Press
  • Keel: eng
  • ISBN-13: 9780191513596

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Analytical Mechanics is the investigation of motion with the rigorous tools of mathematics, with remarkable applications to many branches of physics (Astronomy, Statistical and Quantum Mechanics, etc.). Rooted in the works of Lagrange, Euler, and Poincaré, it is a classical subject with fascinating developments and still rich with open problems. It addresses such fundamental questions as: Is the solar system stable? Is there a unifying "economy" principle in mechanics? How can a point mass be described as a "wave"?

This book was written to fill a gap between elementary expositions and more advanced (and clearly more stimulating) material. It takes the challenge to explain the most relevant ideas and to show the most important applications using plain language and "simple" mathematics, often through an original approach. Basic calculus is enough for the reader to proceed through the book and when more is required, the new mathematical concepts are illustrated, again in plain language. The book is conceived in such a way that some difficult chapters can be bypassed, whilst still grasping the main ideas. However, anybody wishing to go deeper in some directions will find at least the flavour of recent developments and many bibliographical references.

Theory is always accompanied by examples. Many problems are suggested and some are completely worked out at the end of each chapter. The book may effectively be used (and it is in several Italian Universities) for undergraduate as well as for PhD courses in Physics and Mathematics at various levels.

Arvustused

Pleasantly presented. * K. Lindsay, University of Glasgow *

1. Geometric and kinematic foundations of Lagrangian mechanics ;
2.
Dynamics: general laws and the dynamics of a point particle ;
3.
One-dimensional motion ;
4. The dynamics of discrete systems. Lagrangian
formalism ;
5. Motion in a central field ;
6. Rigid bodies: geometry and
kinematics ;
7. The mechanics of rigid bodies: dynamics ;
8. Analytical
mechanics: Hamiltonian formalism ;
9. Analytical mechanics: variational
principles ;
10. Analytical mechanics: canonical formalism ;
11. Analytical
mechanics: Hamilton-Jacobi theory and integrability ;
12. Analytical
mechanics: canonical perturbation theory ;
13. Analytical mechanics: an
introduction to ergodic theory and to chaotic motion ;
14. Statistical
mechanics: kinetic theory ;
15. Statistical mechanics: Gibbs sets ;
16.
Lagrangian formalism in continuum mechanics ; Appendices
Professor Antonio Fasano Dipartimento di Matematica "U. Dini" Universita di Firenze Viale Morgagni 67A 50134 Firenze Italy



Professor Stefano Marmi Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa Italy