Muutke küpsiste eelistusi

E-raamat: Analytical Methods in Applied Mathematics

  • Formaat: EPUB+DRM
  • Sari: Problem Books in Mathematics
  • Ilmumisaeg: 14-Nov-2024
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031747946
  • Formaat - EPUB+DRM
  • Hind: 74,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Problem Books in Mathematics
  • Ilmumisaeg: 14-Nov-2024
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031747946

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book compiles an extensive list of solved and proposed problems in mathematical topics in analysis, aimed at students of mathematics, applied mathematics, physics, and engineering.





The book begins with an exploration of simple linear and nonlinear ordinary differential equations in Chapter 1, advancing through topics such as power series and the Frobenius method for solving differential equations in Chapter 2. In subsequent chapters, the discussion expands to include functions of complex variables, special functions constructed through the hypergeometric function, and series solutions including Fourier, Fourier-Bessel, and Fourier-Legendre series. Problems in integral transforms, Sturm-Liouville systems, Green's function, linear partial differential equations are also included. The work finishes with a special chapter on fractional calculus and practical applications of the topics presented.





With solved examples and step-by-step exercises, this book can be of value to undergraduate and graduate students seeking a hands-on approach on the listed topics, and as a bibliographical complement to STEM courses as well.

Preface.- Ordinary Differential Equations.- Power Series and the Frobenius Method.- Laurent Series and Residues.- Special Functions.- Fourier, Fourier-Bessel and Fourier-Legendre Series.- Laplace and Fourier Transforms.- Sturm-Liouville Systems.- Partial Differential Equations.- Separation of Variables.- Fractional Calculus.- Applications.- Answers and Hints.- Index.

Edmundo Capelas de Oliveira is a Professor and Researcher at the Department of Applied Mathematics at the Institute of Mathematics, Statistics and Scientific Computing, State University of Campinas (Unicamp), Brazil. He got his PhD in Physics (1982) from the same university, and did post-doc studies (in 1991 and 1995) at the Università degli Studi di Perugia, Italy. In 2012, he was distinguished by Unicamp with the First Award for Undergraduate Teaching Incentive for outstanding teaching skills at the undergraduate level. He authored "Solved Exercises in Fractional Calculus" (2019) and co-authored "Mastering Calculus through Practice" (2021) and "The Many Faces of Maxwell, Dirac and Einstein Equations: A Clifford Bundle Approach" (2016), all published by Springer. His research interests lie in fractional calculus, differential equations, and special functions.





José Emílio Maiorino is a public officer at Universidade Estadual de Campinas (Unicamp), Brazil. He holds a Master's degree in Logic and Philosophy of Science and a PhD in Physics from the same university.