Muutke küpsiste eelistusi

E-raamat: Analytical and Stochastic Modelling Techniques and Applications: 28th International Conference, ASMTA 2024, Venice, Italy, June 14, 2024, Proceedings

Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 123,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of the 28th International Conference on Analytical and Stochastic Modelling Techniques and Applications, ASMTA 2024, held in Venice, Italy, on June 14, 2024.





The 10 full papers presented were carefully reviewed and selected from 14 submissions. These papers covered a wide range of topics in analytical and stochastic modeling techniques and their applications.
.- Markov chain aggregation with error bounds on transient
distributions.

.- Strong Aggregation in the Stochastic matching model with Random
Discipline.

.- Optimal Allocation of Tasks to Networked Computing Facilities.

.- Revenue Management for Parallel Services with Fully Observable Queues.

.- Deep reinforcement learning for weakly coupled MDPs with continuous
actions.

.- A lazy abstraction algorithm for Markov decision processes: theory and
initial evaluation.

.- Queueing Analysis of an Ensemble Machine Learning System.

.- Analysis of load balancing prioritization for heterogeneous M/M/c/K server
clusters in the stationary mean-field regime.

.- An algebraic proof of the relation of Markov fluid queues and QBD
processes.

.- Stability of the Multiserver Job Queuing Model with Infinite Resources.