Muutke küpsiste eelistusi

E-raamat: Analytics and Tech Mining for Engineering Managers

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 55,19 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book offers practical tools in Python to students of innovation, as well as competitive intelligence professionals, to track new developments in science, technology, and innovation. The book will appeal to both—tech-mining and data science audiences. For tech-mining audiences, Python presents an appealing, all-in-one language for managing the tech-mining process. The book is a complement to other introductory books on the Python language, providing recipes with which a practitioner can grow a practice of mining text. For data science audiences, this book gives a succinct overview over the most useful techniques of text mining. The book also provides relevant domain knowledge from engineering management; so, an appropriate context for analysis can be created. This is the first book of a two-book series. This first book discusses the mining of text, while the second one describes the analysis of text. This book describes how to extract actionable intelligence from a variety of sources including scientific articles, patents, pdfs, and web pages. There is a variety of tools available within Python for mining text. In particular, we discuss the use of pandas, BeautifulSoup, and pdfminer.
Scott Cunningham is an associate professor at the Delft University of Technology. He teaches and researches topics including data science, network science, and game theory. His research is directed toward helping national governments anticipate the potentially unforeseen consequences of new and emerging technologies. Prior to joining Delft University of Technology, he worked for AT&T as a knowledge discovery analyst, helping customers in the manufacturing and commercial sectors make the best use of their data.

Jan Kwakkel is an assistant professor at Delft University of Technology. His research focusses on model-based support for decision making, with a particular focus on the treatment of uncertainty. Text mining, and more general machine learning techniques, are important in his research. He has applied his research in various domains including transport, water, and energy.