|
1 Multivariate Distributions and Copulas |
|
|
1 | (26) |
|
1.1 Univariate Distributions |
|
|
1 | (3) |
|
1.2 Multivariate Distributions |
|
|
4 | (6) |
|
1.3 Features of Multivariate Data |
|
|
10 | (1) |
|
1.4 The Concept of a Copula and Sklar's Theorem |
|
|
11 | (4) |
|
|
15 | (2) |
|
1.6 Empirical Copula Approximation |
|
|
17 | (1) |
|
1.7 Invariance Properties of Copulas |
|
|
18 | (1) |
|
|
19 | (1) |
|
1.9 Bivariate Conditional Distributions Expressed in Terms of Their Copulas |
|
|
20 | (2) |
|
|
22 | (5) |
|
|
27 | (16) |
|
2.1 Pearson Product-Moment Correlation |
|
|
27 | (1) |
|
2.2 Kendall's τ and Spearman's ρs |
|
|
28 | (6) |
|
|
34 | (2) |
|
2.4 Partial and Conditional Correlations |
|
|
36 | (3) |
|
|
39 | (4) |
|
3 Bivariate Copula Classes, Their Visualization, and Estimation |
|
|
43 | (34) |
|
3.1 Construction of Bivariate Copula Classes |
|
|
43 | (1) |
|
3.2 Bivariate Elliptical Copulas |
|
|
43 | (1) |
|
|
43 | (4) |
|
3.4 Bivariate Extreme-Value Copulas |
|
|
47 | (6) |
|
3.5 Relationship Between Copula Parameters and Kendall's τ |
|
|
53 | (3) |
|
3.6 Rotated and Reflected Copulas |
|
|
56 | (2) |
|
3.7 Relationship Between Copula Parameters and Tail Dependence Coefficients |
|
|
58 | (1) |
|
3.8 Exploratory Visualization |
|
|
58 | (4) |
|
3.9 Simulation of Bivariate Copula Data |
|
|
62 | (2) |
|
3.10 Parameter Estimation in Bivariate Copula Models |
|
|
64 | (3) |
|
3.11 Conditional Bivariate Copulas |
|
|
67 | (3) |
|
3.12 Average Conditional and Partial Bivariate Copulas |
|
|
70 | (1) |
|
|
71 | (6) |
|
4 Pair Copula Decompositions and Constructions |
|
|
77 | (18) |
|
4.1 Illustration in Three Dimensions |
|
|
77 | (11) |
|
4.2 Pair-Copula Constructions of Drawable D-vine and Canonical C-vine Distributions |
|
|
88 | (2) |
|
4.3 Conditional Distribution Functions Associated with Multivariate Distributions |
|
|
90 | (2) |
|
|
92 | (3) |
|
|
95 | (28) |
|
5.1 Necessary Graph Theoretic Background |
|
|
95 | (3) |
|
5.2 Regular Vine Tree Sequences |
|
|
98 | (5) |
|
5.3 Regular Vine Distributions and Copulas |
|
|
103 | (5) |
|
5.4 Simplified Regular Vine Classes |
|
|
108 | (3) |
|
5.5 Representing Regular Vines Using Regular Vine Matrices |
|
|
111 | (8) |
|
|
119 | (4) |
|
6 Simulating Regular Vine Copulas and Distributions |
|
|
123 | (22) |
|
6.1 Simulating Observations from Multivariate Distributions |
|
|
123 | (1) |
|
6.2 Simulating from Pair Copula Constructions |
|
|
124 | (3) |
|
6.3 Simulating from C-vine Copulas |
|
|
127 | (6) |
|
6.4 Simulating from D-vine Copulas |
|
|
133 | (3) |
|
6.5 Simulating from Regular Vine Copulas |
|
|
136 | (7) |
|
|
143 | (2) |
|
7 Parameter Estimation in Simplified Regular Vine Copulas |
|
|
145 | (10) |
|
7.1 Likelihood of Simplified Regular Vine Copulas |
|
|
145 | (2) |
|
7.2 Sequential and Maximum Likelihood Estimation in Simplified Regular Vine Copulas |
|
|
147 | (2) |
|
7.3 Asymptotic Theory of Parametric Regular Vine Copula Estimators |
|
|
149 | (3) |
|
|
152 | (3) |
|
8 Selection of Regular Vine Copula Models |
|
|
155 | (18) |
|
8.1 Selection of a Parametric Copula Family for Each Pair Copula Term and Estimation of the Corresponding Parameters for a Given Vine Tree Structure |
|
|
156 | (2) |
|
8.2 Selection and Estimation of all Three Model Components of a Vine Copula |
|
|
158 | (1) |
|
8.3 The Dißmann Algorithm for Sequential Top-Down Selection of Vine Copulas |
|
|
159 | (10) |
|
|
169 | (4) |
|
9 Comparing Regular Vine Copula Models |
|
|
173 | (12) |
|
9.1 Akaike and Bayesian Information Criteria for Regular Vine Copulas |
|
|
174 | (3) |
|
9.2 Kullback-Leibler Criterion |
|
|
177 | (1) |
|
9.3 Vuong Test for Comparing Different Regular Vine Copula Models |
|
|
178 | (4) |
|
9.3.1 Correction Factors in the Vuong Test for Adjusting for Model Complexity |
|
|
181 | (1) |
|
|
182 | (3) |
|
10 Case Study: Dependence Among German DAX Stocks |
|
|
185 | (18) |
|
10.1 Data Description and Sector Groupings |
|
|
185 | (2) |
|
|
187 | (1) |
|
10.3 Finding Representatives of Sectors |
|
|
188 | (1) |
|
10.4 Dependence Structure Among Representatives |
|
|
188 | (11) |
|
|
199 | (2) |
|
10.6 Some Interpretive Remarks |
|
|
201 | (2) |
|
11 Recent Developments in Vine Copula Based Modeling |
|
|
203 | (24) |
|
11.1 Advances in Estimation |
|
|
203 | (4) |
|
11.2 Advances in Model Selection of Vine Copula Based Models |
|
|
207 | (6) |
|
11.3 Advances for Special Data Structures |
|
|
213 | (4) |
|
11.4 Applications of Vine Copulas in Financial Econometrics |
|
|
217 | (2) |
|
11.5 Applications of Vine Copulas in the Life Sciences |
|
|
219 | (3) |
|
11.6 Application of Vine Copulas in Insurance |
|
|
222 | (1) |
|
11.7 Application of Vine Copulas in the Earth Sciences |
|
|
222 | (1) |
|
11.8 Application of Vine Copulas in Engineering |
|
|
223 | (1) |
|
11.9 Software for Vine Copula Modeling |
|
|
223 | (4) |
References |
|
227 | (12) |
Index |
|
239 | |