Preface |
|
ix | |
Author Biographies |
|
xvii | |
|
|
1 | (12) |
|
1.1 The Spatial Theory of Voting |
|
|
2 | (9) |
|
1.1.1 Theoretical Development and Applications of the Spatial Voting Model |
|
|
5 | (2) |
|
1.1.2 The Development of Empirical Estimation Methods for Spatial Models of Voting |
|
|
7 | (1) |
|
1.1.3 The Basic Space Theory |
|
|
8 | (3) |
|
1.2 Summary of Data Types Analyzed by Spatial Voting Models |
|
|
11 | (1) |
|
|
11 | (2) |
|
|
13 | (54) |
|
2.1 Aldrich-McKelvey Scaling |
|
|
14 | (17) |
|
2.1.1 The basicspace Package in R |
|
|
17 | (1) |
|
2.1.2 Example 1: 2009 European Election Study (French Module) |
|
|
18 | (5) |
|
2.1.3 Example 2: 1968 American National Election Study Urban Unrest and Vietnam War Scales |
|
|
23 | (5) |
|
2.1.4 Estimating Bootstrapped Standard Errors for Aldrich-McKelvey Scaling |
|
|
28 | (3) |
|
2.2 Basic Space Scaling: The blackbox Function |
|
|
31 | (16) |
|
2.2.1 Example 1: 2000 Convention Delegate Study |
|
|
32 | (8) |
|
2.2.2 Example 2: 2010 Swedish Parliamentary Candidate Survey |
|
|
40 | (3) |
|
2.2.3 Estimating Bootstrapped Standard Errors for Black Box Scaling |
|
|
43 | (4) |
|
2.3 Basic Space Scaling: The blackbox_transpose Function |
|
|
47 | (8) |
|
2.3.1 Example 1: 2000 and 2006 Comparative Study of Electoral Systems (Mexican Modules) |
|
|
48 | (3) |
|
2.3.2 Estimating Bootstrapped Standard Errors for Black Box Transpose Scaling |
|
|
51 | (1) |
|
2.3.3 Using the blackbox_transpose Function on Data sets with Large Numbers of Respondents |
|
|
52 | (3) |
|
2.4 Ordered Optimal Classification |
|
|
55 | (3) |
|
2.5 Using Anchoring Vignettes |
|
|
58 | (5) |
|
|
63 | (1) |
|
|
63 | (4) |
|
3 Analyzing Similarities and Dissimilarities Data |
|
|
67 | (40) |
|
3.1 Classical Metric Multidimensional Scaling |
|
|
68 | (15) |
|
3.1.1 Example 1: Nations Similarities Data |
|
|
71 | (2) |
|
3.1.2 Metric MDS Using Numerical Optimization |
|
|
73 | (4) |
|
3.1.3 Metric MDS Using Majorization (SMACOF) |
|
|
77 | (1) |
|
3.1.4 The smacof Package in R |
|
|
78 | (5) |
|
3.2 Nonmetric Multidimensional Scaling |
|
|
83 | (10) |
|
3.2.1 Example 1: Nations Similarities Data |
|
|
85 | (3) |
|
3.2.2 Example 2: 90th US Senate Agreement Scores |
|
|
88 | (5) |
|
3.3 Individual Differences Multidimensional Scaling |
|
|
93 | (8) |
|
3.3.1 Example 1: 2009 European Election Study (French Module) |
|
|
97 | (4) |
|
|
101 | (2) |
|
|
103 | (4) |
|
4 Unfolding Analysis of Rating Scale Data |
|
|
107 | (22) |
|
4.1 Solving the Thermometers Problem |
|
|
108 | (2) |
|
4.2 Metric Unfolding Using the MLSMU6 Procedure |
|
|
110 | (6) |
|
4.2.1 Example 1: 1981 Interest Group Ratings of US Senators Data |
|
|
114 | (2) |
|
4.3 Metric Unfolding Using Majorization (SMACOF) |
|
|
116 | (9) |
|
4.3.1 Example 1: 2009 European Election Study (Danish Module) |
|
|
119 | (5) |
|
4.3.2 Comparing the MLSMU6 and SMACOF Metric Unfolding Procedures |
|
|
124 | (1) |
|
|
125 | (1) |
|
|
126 | (3) |
|
5 Unfolding Analysis of Binary Choice Data |
|
|
129 | (52) |
|
5.1 The Geometry of Legislative Voting |
|
|
130 | (2) |
|
5.2 Reading Legislative Roll Call Data into R, with the pscl Package |
|
|
132 | (1) |
|
5.3 Parametric Methods - NOMINATE |
|
|
133 | (23) |
|
5.3.1 Obtaining Uncertainty Estimates with the Parametric Bootstrap |
|
|
136 | (1) |
|
5.3.2 Types of NOMINATE Scores |
|
|
137 | (2) |
|
5.3.3 Accessing DW-NOMINATE Scores |
|
|
139 | (1) |
|
5.3.4 The wnominate Package in R |
|
|
140 | (1) |
|
5.3.5 Example 1: The 108th US House |
|
|
140 | (13) |
|
5.3.6 Example 2: The First European Parliament (Using the Parametric Bootstrap) |
|
|
153 | (3) |
|
5.4 Nonparametric Methods - Optimal Classification |
|
|
156 | (15) |
|
5.4.1 The oc Package in R |
|
|
157 | (1) |
|
5.4.2 Example 1: The French National Assembly during the Fourth Republic |
|
|
157 | (7) |
|
5.4.3 Example 2: 2008 American National Election Study Feeling Thermometers Data |
|
|
164 | (7) |
|
5.5 Conclusion: Comparing Methods for the Analysis of Legislative Roll Call Data |
|
|
171 | (7) |
|
5.5.1 Identification of the Model Parameters |
|
|
174 | (1) |
|
5.5.2 Comparing Ideal Point Estimates for the 111th US Senate |
|
|
175 | (3) |
|
|
178 | (3) |
|
6 Bayesian Scaling Models |
|
|
181 | (94) |
|
6.1 Bayesian Aldrich-McKelvey Scaling |
|
|
182 | (9) |
|
6.1.1 Comparing Aldrich-McKelvey Standard Errors |
|
|
188 | (3) |
|
6.2 Bayesian Multidimensional Scaling |
|
|
191 | (4) |
|
6.2.1 Example 1: Nations Similarities Data |
|
|
192 | (3) |
|
6.3 Bayesian Multidimensional Unfolding |
|
|
195 | (13) |
|
6.3.1 Example 2: 1968 American National Election Study Feeling Thermometers Data |
|
|
197 | (11) |
|
6.4 Parametric Methods - Bayesian Item Response Theory |
|
|
208 | (33) |
|
6.4.1 The MCMCpack and pscl Packages in R |
|
|
212 | (1) |
|
6.4.2 Example 3: The 2000 Term of the US Supreme Court (Unidimensional IRT) |
|
|
212 | (9) |
|
6.4.3 Running Multiple Markov Chains in MCMCpack and pscl |
|
|
221 | (3) |
|
6.4.4 Example 4: The Confirmation Vote of Robert Bork to the US Supreme Court (Unidimensional IRT) |
|
|
224 | (9) |
|
6.4.5 Example 5: The 89th US Senate (Multidimensional IRT) |
|
|
233 | (7) |
|
6.4.6 Identification of the Model Parameters |
|
|
240 | (1) |
|
|
241 | (5) |
|
6.5.1 The anominate Package in R |
|
|
244 | (2) |
|
6.6 Ordinal and Dynamic IRT Models |
|
|
246 | (17) |
|
6.6.1 IRT with Ordinal Choice Data |
|
|
247 | (8) |
|
|
255 | (8) |
|
|
263 | (7) |
|
|
270 | (1) |
|
|
271 | (4) |
References |
|
275 | (20) |
Index |
|
295 | |