Muutke küpsiste eelistusi

E-raamat: Analyzing Video Sequences of Multiple Humans: Tracking, Posture Estimation and Behavior Recognition

  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Analyzing Video Sequences of Multiple Humans: Tracking, Posture Estimation and Behavior Recognition describes some computer vision-based methods that analyze video sequences of humans. More specifically, methods for tracking multiple humans in a scene, estimating postures of a human body in 3D in real-time, and recognizing a person's behavior (gestures or activities) are discussed. For the tracking algorithm, the authors developed a non-synchronous method that tracks multiple persons by exploiting a Kalman filter that is applied to multiple video sequences. For estimating postures, an algorithm is presented that locates the significant points which determine postures of a human body, in 3D in real-time. Human activities are recognized from a video sequence by the HMM (Hidden Markov Models)-based method that the authors pioneered. The effectiveness of the three methods is shown by experimental results.

Muu info

Springer Book Archives
List of Figures. List of Tables. Preface. Contributing Authors. 1: Introduction; J. Ohya. 2: Tracking multiple persons from multiple camera images; A. Utsumi. 2.1. Overview. 2.2. Preparation. 2.3. Features of Multiple camera based tracking systems. 2.4. Algorithms for multiple-camera human tracking system. 2.5. Implementation. 2.6. Experiments. 2.7. Discussion and Conclusions 3: Posture estimation; J. Ohya. 3.1. Introduction. 3.2. A heuristic for estimating postures in 2D. 3.3. A heuristic method for estimating postures in 3D. 3.4. A non-heuristic method for estimating postures in 3D. 3.5. Applications to virtual environments. 3.6. Discussions and conclusions. 4: Recognizing human behavior using Hidden Markov Models; J. Yamato. 4.1. Background and overview. 4.2. Hidden Markov models. 4.3. Applying HMM to time-sequential images. 4.4. Experiments. 4.5. Category-separated vector quantization. 4.6. Applying image database search. 4.7. Discussions and conclusion. 5: Conclusion and Future Work; J. Ohya. Index.