Muutke küpsiste eelistusi

E-raamat: Apache HBase Primer

  • Formaat: PDF+DRM
  • Ilmumisaeg: 17-Nov-2016
  • Kirjastus: APress
  • Keel: eng
  • ISBN-13: 9781484224243
  • Formaat - PDF+DRM
  • Hind: 30,86 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 17-Nov-2016
  • Kirjastus: APress
  • Keel: eng
  • ISBN-13: 9781484224243

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Learn the fundamental foundations and concepts of the Apache HBase (NoSQL) open source database. It covers the HBase data model, architecture, schema design, API, and administration.

Apache HBase is the database for the Apache Hadoop framework. HBase is a column family based NoSQL database that provides a flexible schema model.


What You'll Learn

  • Work with the core concepts of HBase
  • Discover the HBase data model, schema design, and architecture
  • Use the HBase API and administration

Who This Book Is For

Apache HBase (NoSQL) database users, designers, developers, and admins.


About the Author xiii
About the Technical Reviewer xv
Introduction xvii
Part I Core Concepts
1(48)
Chapter 1 Fundamental Characteristics
3(6)
Distributed
3(1)
Big Data Store
3(1)
Non-Relational
3(1)
Flexible Data Model
4(1)
Scalable
4(1)
Roles in Hadoop Big Data Ecosystem
5(1)
How Is Apache HBase Different from a Traditional RDBMS?
5(3)
Summary
8(1)
Chapter 2 Apache HBase and HDFS
9(36)
Overview
9(5)
Storing Data
14(1)
HFile Data files- HFile v1
15(2)
HBase Blocks
17(1)
Key Value Format
18(1)
HFile v2
19(1)
Encoding
20(1)
Compaction
21(1)
KeyValue Class
21(3)
Data Locality
24(1)
Table Format
25(1)
HBase Ecosystem
25(1)
HBase Services
26(1)
Auto-sharding
27(1)
The Write Path to Create a Table
27(1)
The Write Path to Insert Data
28(1)
The Write Path to Append-Only R/W
29(1)
The Read Path for Reading Data
30(1)
The Read Path Append-Only to Random R/W
30(1)
HFile Format
30(1)
Data Block Encoding
31(1)
Compactions
32(1)
Snapshots
32(1)
The HFileSystem Class
33(1)
Scaling
33(2)
HBase Java Client API
35(1)
Random Access
36(1)
Data Files (HFile)
36(1)
Reference Files/Links
37(1)
Write-Ahead Logs
38(1)
Data Locality
38(2)
Checksums
40(2)
Data Locality for HBase
42(1)
MemStore
42(1)
Summary
43(2)
Chapter 3 Application Characteristics
45(4)
Summary
47(2)
Part II Data Model
49(18)
Chapter 4 Physical Storage
51(2)
Summary
52(1)
Chapter 5 Column Family and Column Qualifier
53(6)
Summary
57(2)
Chapter 6 Row Versioning
59(4)
Versions Sorting
61(1)
Summary
62(1)
Chapter 7 Logical Storage
63(4)
Summary
65(2)
Part III Architecture
67(42)
Chapter 8 Major Components of a Cluster
69(6)
Master
70(1)
RegionServers
70(1)
ZooKeeper
71(1)
Regions
72(1)
Write-Ahead Log
72(1)
Store
72(1)
HDFS
73(1)
Clients
73(1)
Summary
73(2)
Chapter 9 Regions
75(6)
How Many Regions?
76(1)
Compactions
76(1)
Region Assignment
76(1)
Failover
77(1)
Region Locality
77(1)
Distributed Datastore
77(1)
Partitioning
77(1)
Auto Sharding and Scalability
78(1)
Region Splitting
78(1)
Manual Splitting
79(1)
Pre-Splitting
79(1)
Load Balancing
79(1)
Preventing Hotspots
80(1)
Summary
80(1)
Chapter 10 Finding a Row in a Table
81(6)
Block Cache
82(1)
The hbase: meta Table
83(2)
Summary
85(2)
Chapter 11 Compactions
87(12)
Minor Compactions
87(1)
Major Compactions
88(1)
Compaction Policy
88(1)
Function and Purpose
89(1)
Versions and Compactions
90(1)
Delete Markers and Compactions
90(1)
Expired Rows and Compactions
90(1)
Region Splitting and Compactions
90(1)
Number of Regions and Compactions
91(1)
Data Locality and Compactions
91(1)
Write Throughput and Compactions
91(1)
Encryption and Compactions
91(1)
Configuration Properties
92(5)
Summary
97(2)
Chapter 12 Region Failover
99(6)
The Role of the ZooKeeper
99(1)
HBase Resilience
99(1)
Phases of Failover
100(2)
Failure Detection
102(1)
Data Recovery
102(1)
Regions Reassignment
103(1)
Failover and Data Locality
103(1)
Configuration Properties
103(1)
Summary
103(2)
Chapter 13 Creating a Column Family
105(4)
Cardinality
105(1)
Number of Column Families
106(1)
Column Family Compression
106(1)
Column Family Block Size
106(1)
Bloom Filters
106(1)
IN_MEMORY
107(1)
MAX_LENGTH and MAX_VERSIONS
107(1)
Summary
107(2)
Part IV Schema Design
109(12)
Chapter 14 Region Splitting
111(6)
Managed Splitting
112(1)
Pre-Splitting
113(1)
Configuration Properties
113(3)
Summary
116(1)
Chapter 15 Defining the Row Keys
117(4)
Table Key Design
117(1)
Filters
118(1)
FirstKeyOnlyFilter Filter
118(1)
KeyOnlyFilter Filter
118(1)
Bloom Filters
118(1)
Scan Time
118(1)
Sequential Keys
118(1)
Defining the Row Keys for Locality
119(1)
Summary
119(2)
Part V Apache HBase Java API
121(14)
Chapter 16 The HBaseAdmin Class
123(6)
Summary
127(2)
Chapter 17 Using the Get Class
129(4)
Summary
132(1)
Chapter 18 Using the HTable Class
133(2)
Summary
134(1)
Part VI Administration
135(14)
Chapter 19 Using the HBase Shell
137(8)
Creating a Table
137(1)
Altering a Table
138(1)
Adding Table Data
139(1)
Describing a Table
139(1)
Finding If a Table Exists
139(1)
Listing Tables
139(1)
Scanning a Table
140(1)
Enabling and Disabling a Table
141(1)
Dropping a Table
141(1)
Counting the Number of Rows in a Table
141(1)
Getting Table Data
141(1)
Truncating a Table
142(1)
Deleting Table Data
142(1)
Summary
143(2)
Chapter 20 Bulk Loading Data
145(4)
Summary
147(2)
Index 149
Deepak Vohra is an experienced web and cloud platform developer, NuBean consultant and a Sun Certified Java Programmer. He actively uses HBase, Hadoop, Cloudbase, Docker and related NoSQL and big data computing development platforms.