|
1 Introduction To Applications |
|
|
1 | (8) |
|
1.1 A Sample of Linear Algebra in Our World |
|
|
1 | (2) |
|
1.1.1 Modeling Dynamical Processes |
|
|
1 | (1) |
|
1.1.2 Signals and Data Analysis |
|
|
2 | (1) |
|
1.1.3 Optimal Design and Decision-Making |
|
|
2 | (1) |
|
1.2 Applications We Use to Build Linear Algebra Tools |
|
|
3 | (2) |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
5 | (1) |
|
1.4 The Language of Linear Algebra |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
7 | (1) |
|
|
7 | (2) |
|
|
9 | (74) |
|
2.1 Exploration: Digital Images |
|
|
9 | (5) |
|
|
11 | (3) |
|
|
14 | (24) |
|
2.2.1 Systems of Equations |
|
|
14 | (4) |
|
2.2.2 Techniques for Solving Systems of Linear Equations |
|
|
18 | (11) |
|
|
29 | (4) |
|
2.2.4 The Geometry of Systems of Equations |
|
|
33 | (2) |
|
|
35 | (3) |
|
|
38 | (15) |
|
2.3.1 Images and Image Arithmetic |
|
|
38 | (3) |
|
2.3.2 Vectors and Vector Spaces |
|
|
41 | (7) |
|
2.3.3 The Geometry of the Vector Space R3 |
|
|
48 | (2) |
|
2.3.4 Properties of Vector Spaces |
|
|
50 | (2) |
|
|
52 | (1) |
|
2.4 Vector Space Examples |
|
|
53 | (13) |
|
2.4.1 Diffusion Welding and Heat States |
|
|
54 | (1) |
|
|
55 | (3) |
|
|
58 | (1) |
|
|
59 | (2) |
|
2.4.5 Other Vector Spaces |
|
|
61 | (2) |
|
2.4.6 Is My Set a Vector Space? |
|
|
63 | (1) |
|
|
64 | (2) |
|
|
66 | (17) |
|
2.5.1 Subsets and Subspaces |
|
|
68 | (2) |
|
2.5.2 Examples of Subspaces |
|
|
70 | (3) |
|
|
73 | (1) |
|
2.5.4 Building New Subspaces |
|
|
74 | (3) |
|
|
77 | (6) |
|
3 Vector Space Arithmetic and Representations |
|
|
83 | (92) |
|
|
83 | (27) |
|
3.1.1 Linear Combinations |
|
|
84 | (4) |
|
|
88 | (4) |
|
3.1.3 The Matrix Equation Ax = b |
|
|
92 | (6) |
|
3.1.4 The Matrix Equation Ax = 0 |
|
|
98 | (6) |
|
3.1.5 The Principle of Superposition |
|
|
104 | (2) |
|
|
106 | (4) |
|
|
110 | (14) |
|
3.2.1 The Span of a Set of Vectors |
|
|
111 | (3) |
|
3.2.2 To Span a Set of Vectors |
|
|
114 | (5) |
|
3.2.3 Span X is a Vector Space |
|
|
119 | (3) |
|
|
122 | (2) |
|
3.3 Linear Dependence and Independence |
|
|
124 | (12) |
|
3.3.1 Linear Dependence and Independence |
|
|
126 | (2) |
|
3.3.2 Determining Linear (In)dependence |
|
|
128 | (4) |
|
3.3.3 Summary of Linear Dependence |
|
|
132 | (1) |
|
|
133 | (3) |
|
|
136 | (24) |
|
3.4.1 Efficient Heat State Descriptions |
|
|
136 | (3) |
|
|
139 | (3) |
|
3.4.3 Constructing a Basis |
|
|
142 | (4) |
|
|
146 | (6) |
|
3.4.5 Properties of Bases |
|
|
152 | (5) |
|
|
157 | (3) |
|
|
160 | (15) |
|
3.5.1 Cataloging Heat States |
|
|
160 | (3) |
|
|
163 | (2) |
|
3.5.3 Example Coordinates of Abstract Vectors |
|
|
165 | (5) |
|
3.5.4 Brain Scan Images and Coordinates |
|
|
170 | (1) |
|
|
171 | (4) |
|
|
175 | (106) |
|
4.1 Explorations: Computing Radiographs and the Radiographic Transformation |
|
|
175 | (8) |
|
4.1.1 Radiography on Slices |
|
|
176 | (2) |
|
4.1.2 Radiographic Scenarios and Notation |
|
|
178 | (1) |
|
|
179 | (1) |
|
4.1.4 Radiographic Setup Example |
|
|
180 | (1) |
|
|
180 | (3) |
|
|
183 | (21) |
|
4.2.1 Transformations are Functions |
|
|
185 | (1) |
|
4.2.2 Linear Transformations |
|
|
185 | (7) |
|
4.2.3 Properties of Linear Transformations |
|
|
192 | (6) |
|
|
198 | (6) |
|
4.3 Explorations: Heat Diffusion |
|
|
204 | (8) |
|
4.3.1 Heat States as Vectors |
|
|
205 | (3) |
|
4.3.2 Heat Evolution Equation |
|
|
208 | (1) |
|
|
209 | (1) |
|
4.3.4 Extending the Exploration: Application to Image Warping |
|
|
209 | (3) |
|
4.4 Matrix Representations of Linear Transformations |
|
|
212 | (18) |
|
4.4.1 Matrix Transformations between Euclidean Spaces |
|
|
212 | (3) |
|
4.4.2 Matrix Transformations |
|
|
215 | (9) |
|
4.4.3 Change of Basis Matrix |
|
|
224 | (3) |
|
|
227 | (3) |
|
4.5 The Determinants of a Matrix |
|
|
230 | (17) |
|
4.5.1 Determinant Calculations and Algebraic Properties |
|
|
235 | (12) |
|
4.6 Explorations: Re-Evaluating Our Tomographic Goal |
|
|
247 | (3) |
|
4.6.1 Seeking Tomographic Transformations |
|
|
247 | (1) |
|
|
248 | (2) |
|
4.7 Properties of Linear Transformations |
|
|
250 | (31) |
|
4.7.1 One-To-One Transformations |
|
|
250 | (4) |
|
4.7.2 Properties of One-To-One Linear Transformations |
|
|
254 | (4) |
|
4.7.3 Onto Linear Transformations |
|
|
258 | (3) |
|
4.7.4 Properties of Onto Linear Transformations |
|
|
261 | (2) |
|
4.7.5 Summary of Properties |
|
|
263 | (1) |
|
4.7.6 Bijections and Isomorphisms |
|
|
263 | (1) |
|
4.7.7 Properties of Isomorphic Vector Spaces |
|
|
264 | (3) |
|
4.7.8 Building and Recognizing Isomorphisms |
|
|
267 | (2) |
|
4.7.9 Inverse Transformations |
|
|
269 | (4) |
|
4.7.10 Left Inverse Transformations |
|
|
273 | (2) |
|
|
275 | (6) |
|
|
281 | (48) |
|
5.1 Transformation Spaces |
|
|
282 | (19) |
|
|
282 | (5) |
|
5.1.2 Domain and Range Spaces |
|
|
287 | (5) |
|
5.1.3 One-to-One and Onto Revisited |
|
|
292 | (3) |
|
5.1.4 The Rank-Nullity Theorem |
|
|
295 | (3) |
|
|
298 | (3) |
|
5.2 Matrix Spaces and the Invertible Matrix Theorem |
|
|
301 | (23) |
|
|
302 | (11) |
|
5.2.2 The Invertible Matrix Theorem |
|
|
313 | (9) |
|
|
322 | (2) |
|
5.3 Exploration: Reconstruction Without an Inverse |
|
|
324 | (5) |
|
5.3.1 Transpose of a Matrix |
|
|
324 | (1) |
|
5.3.2 Invertible Transformation |
|
|
325 | (1) |
|
5.3.3 Application to a Small Example |
|
|
325 | (1) |
|
5.3.4 Application to Brain Reconstruction |
|
|
326 | (3) |
|
|
329 | (50) |
|
6.1 Exploration: Heat State Evolution |
|
|
330 | (2) |
|
6.2 Eigenspaces and Diagonalizable Transformations |
|
|
332 | (27) |
|
6.2.1 Eigenvectors and Eigenvalues |
|
|
333 | (2) |
|
6.2.2 Computing Eigenvalues and Finding Eigenvectors |
|
|
335 | (9) |
|
6.2.3 Using Determinants to Find Eigenvalues |
|
|
344 | (4) |
|
|
348 | (2) |
|
6.2.5 Diagonalizable Transformations |
|
|
350 | (7) |
|
|
357 | (2) |
|
6.3 Explorations: Long-Term Behavior and Diffusion Welding Process Termination Criterion |
|
|
359 | (5) |
|
6.3.1 Long-Term Behavior in Dynamical Systems |
|
|
359 | (1) |
|
6.3.2 Using Matlab/Octave to Calculate Eigenvalues and Eigenvectors |
|
|
360 | (2) |
|
6.3.3 Termination Criterion |
|
|
362 | (2) |
|
6.3.4 Reconstruct Heat State at Removal |
|
|
364 | (1) |
|
6.4 Markov Processes and Long-Term Behavior |
|
|
364 | (15) |
|
|
365 | (4) |
|
|
369 | (3) |
|
|
372 | (2) |
|
|
374 | (5) |
|
7 Inner Product Spaces and Pseudo-Invertibility |
|
|
379 | (100) |
|
7.1 Inner Products, Norms, and Coordinates |
|
|
379 | (23) |
|
|
381 | (4) |
|
|
385 | (3) |
|
7.1.3 Properties of Inner Product Spaces |
|
|
388 | (2) |
|
|
390 | (5) |
|
7.1.5 Inner Product and Coordinates |
|
|
395 | (3) |
|
|
398 | (4) |
|
|
402 | (30) |
|
7.2.1 Coordinate Projection |
|
|
404 | (5) |
|
7.2.2 Orthogonal Projection |
|
|
409 | (13) |
|
7.2.3 Gram-Schmidt Process |
|
|
422 | (7) |
|
|
429 | (3) |
|
7.3 Orthogonal Transformations |
|
|
432 | (15) |
|
7.3.1 Orthogonal Matrices |
|
|
433 | (6) |
|
7.3.2 Orthogonal Diagonalization |
|
|
439 | (3) |
|
7.3.3 Completing the Invertible Matrix Theorem |
|
|
442 | (1) |
|
7.3.4 Symmetric Diffusion Transformation |
|
|
443 | (2) |
|
|
445 | (2) |
|
7.4 Exploration: Pseudo-Inverting the Non-invertible |
|
|
447 | (4) |
|
7.4.1 Maximal Isomorphism Theorem |
|
|
447 | (2) |
|
7.4.2 Exploring the Nature of the Data Compression Transformation |
|
|
449 | (2) |
|
7.4.3 Additional Exercises |
|
|
451 | (1) |
|
7.5 Singular Value Decomposition |
|
|
451 | (20) |
|
7.5.1 The Singular Value Decomposition |
|
|
453 | (12) |
|
7.5.2 Computing the Pseudo-Inverse |
|
|
465 | (5) |
|
|
470 | (1) |
|
7.6 Explorations: Pseudo-Inverse Tomographic Reconstruction |
|
|
471 | (8) |
|
7.6.1 The First Pseudo-Inverse Brain Reconstructions |
|
|
471 | (2) |
|
7.6.2 Understanding the Effects of Noise |
|
|
473 | (1) |
|
7.6.3 A Better Pseudo-Inverse Reconstruction |
|
|
473 | (1) |
|
7.6.4 Using Object-Prior Information |
|
|
474 | (3) |
|
7.6.5 Additional Exercises |
|
|
477 | (2) |
|
|
479 | (8) |
|
8.1 Radiography and Tomography Example |
|
|
479 | (1) |
|
|
480 | (1) |
|
8.3 Your Next Mathematical Steps |
|
|
481 | (3) |
|
8.3.1 Modeling Dynamical Processes |
|
|
482 | (1) |
|
8.3.2 Signals and Data Analysis |
|
|
482 | (1) |
|
8.3.3 Optimal Design and Decision Making |
|
|
483 | (1) |
|
|
484 | (1) |
|
|
485 | (2) |
Appendix A Transmission Radiography and Tomography: A Simplified Overview |
|
487 | (10) |
Appendix B The Diffusion Equation |
|
497 | (4) |
Appendix C Proof Techniques |
|
501 | (18) |
Appendix D Fields |
|
519 | (4) |
Index |
|
523 | |