Muutke küpsiste eelistusi

E-raamat: Application Of Omics, Ai And Blockchain In Bioinformatics Research

Edited by (Asia Univ, Taiwan), Edited by (Asia Univ, Taiwan & Univ Of Illinois At Chicago, Usa)
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 70,20 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Ten papers investigate the use of different computational methods, such as deep learning, big data analysis, advance computation, and network analysis, to address complex data analysis problems in precision medicine. The Asian contributors apply blockchain to a clinical platform, analyze circulating tumor DNA in cancer patients, screen medicinal plant databases for potential drugs, assess high performance computing in tandem mass spectrometry data processing, and propose a hybrid approach for cluster analysis of RNA-seq data. Annotation ©2020 Ringgold, Inc., Portland, OR (protoview.com)

With the increasing availability of omics data and mounting evidence of the usefulness of computational approaches to tackle multi-level data problems in bioinformatics and biomedical research in this post-genomics era, computational biology has been playing an increasingly important role in paving the way as basis for patient-centric healthcare. Two such areas are: (i) implementing AI algorithms supported by biomedical data would deliver significant benefits/improvements towards the goals of precision medicine (ii) blockchain technology will enable medical doctors to securely and privately build personal healthcare records, and identify the right therapeutic treatments and predict the progression of the diseases. A follow-up in the publication of our book Computation Methods with Applications in Bioinformatics Analysis (2017), topics in this volume include: clinical bioinformatics, omics-based data analysis, Artificial Intelligence (AI), blockchain, big data analytics, drug discovery, RNA-seq analysis, tensor decomposition and Boolean network.

Preface v
About the Editors vii
Acknowledgment xi
Chapter 1 Generalized Iterative Modeling for Clinical Omics Data Analysis
1(10)
Kung-Hao Liang
Chapter 2 Explainable AI: Mining of Genotype Data Identifies Complex Disease Pathways -- Autism Case Studies
11(18)
Matt Spencer
Saad Khan
Zohreh Talebizadeh
Chi-Ren Shyu
Chapter 3 Blockchain for Pre-clinical and Clinical Platform with Big Data
29(18)
Yin-Wu Chen
Zon-Yin Shae
Chapter 4 Analysis of Circulating Tumor DNA in Patients with Cancer: A Clinical Perspective
47(12)
Chi-Chun Yeh
Peter Mu-Hsin Chang
Chapter 5 Big Data Computation of Drug Design: From the Natural Products to the Transcriptomic-Based Molecular Development
59(28)
David Agustriawan
Arli Aditya Parikesit
Rizky Nurdiansyah
Chapter 6 A Hybrid Approach Integrating Model-Based Method and Gene Functional Similarity for Cluster Analysis of RNA-Seq Data
87(22)
Ming-Han Chan
Pin-Chen Chou
Rong-Ming Chen
Rouh-Mei Hu
Chapter 7 High-Performance Computing for Measurement of Cancer Gene Signatures
109(14)
Hsueh-Ting Chu
Chapter 8 High-Performance Computing in Tandem Mass Spectrometry (MS/MS) Data Processing
123(18)
Li Chuang
Lin Feng
Chapter 9 Analysis of Boolean Networks and Boolean Models of Metabolic Networks
141(18)
Tatsuya Akutsu
Chapter 10 Tensor Decomposition Based Unsupervised Feature Extraction Applied to Bioinformatics
159(30)
Yh. Taguchi
Index 189