Muutke küpsiste eelistusi

E-raamat: Applications of EPR and NMR Spectroscopy in Homogeneous Catalysis

(Boreskov Institute of Catalysis, Novosibirsk, Russia), (Boreskov Institute of Catalysis, Novosibirsk, Russia)
  • Formaat: 243 pages
  • Ilmumisaeg: 07-Apr-2017
  • Kirjastus: CRC Press Inc
  • ISBN-13: 9781498742641
  • Formaat - PDF+DRM
  • Hind: 89,69 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 243 pages
  • Ilmumisaeg: 07-Apr-2017
  • Kirjastus: CRC Press Inc
  • ISBN-13: 9781498742641

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book reviews advances in important and practically relevant homogeneous catalytic transformations, such as single-site olefin polymerizations and chemo- and stereo-selective oxidations. Close attention is paid to the experimental investigation of the active sites of catalytic oxidation systems and their mechanisms. Major subjects include the applications of NMR and EPR spectroscopic techniques and data obtained by other physical methods. The book addresses a broad readership and focus on widespread techniques available in labs with NMR and EPR spectrometers.

Preface ix
Authors xi
Abbreviations xiii
Chapter 1 Basic Principles of EPR and NMR Spectroscopy
1(26)
1.1 Electron and Nuclear Magnetic Moments in the Magnetic Field
1(3)
1.2 Instrumentation for CW EPR Spectroscopy
4(1)
1.3 Main Parameters Characterizing EPR Spectra
4(4)
1.4 EPR Spectra of Frozen Solutions
8(4)
1.5 Instrumentation for Pulsed FT NMR Spectroscopy
12(1)
1.6 Main Characteristics of NMR Spectra
12(4)
1.6.1 Chemical Shift
12(2)
1.6.2 Spin--Spin Coupling
14(1)
1.6.3 NMR Line Width
14(2)
1.7 Bloch Equations
16(5)
1.8 Pulsed FT NMR Spectroscopy
21(6)
References
24(3)
Chapter 2 Some NMR Spectroscopic Techniques Used in Homogeneous Catalysis
27(28)
2.1 Measuring 1H and 13C NMR Spectra of a Sample Compound
29(10)
2.1.1 One- and Two-Dimensional 1H and 13C NMR Spectra
29(8)
2.1.2 1H COSY versus 1H TOCSY Spectra
37(2)
2.2 1H Spectra of Paramagnetic Molecules
39(16)
2.2.1 Probing the Structure of an Unknown Ni(II) Complex by Multinuclear NMR
40(2)
2.2.2 Temperature Dependence of the Paramagnetic Shift
42(1)
2.2.2.1 Temperature Dependence of the Paramagnetic Shift of Monomeric Compounds
43(2)
2.2.2.2 Temperature Dependence of Paramagnetic Shift of Antiferromagnetic Dimers
45(2)
2.2.2.3 Measuring Magnetic Susceptibility (Evans Method) for Studying Spin Equilibrium
47(4)
References
51(4)
Chapter 3 NMR and EPR Spectroscopy as a Tool for the Studies of Intermediates of Transition Metal--Catalyzed Oxidations
55(72)
3.1 Superoxo Complexes
56(11)
3.1.1 Superoxo Complexes of Co(III)
56(3)
3.1.2 Superoxo Complexes of Pd(II)
59(2)
3.1.3 Superoxo Complexes of Ni(II)
61(2)
3.1.4 Superoxo Complexes of Copper(II)
63(2)
3.1.5 Superoxo Complexes of Iron(III)
65(2)
3.2 Alkylperoxo Complexes
67(13)
3.2.1 Alkylperoxo Complexes of Molybdenum
68(4)
3.2.2 Alkylperoxo Complexes of Titanium
72(4)
3.2.3 Alkylperoxo Complexes of Vanadium
76(4)
3.3 Peroxo Complexes
80(8)
3.3.1 Peroxo Complexes of Molybdenum
80(3)
3.3.2 Peroxo Complexes of Vanadium
83(4)
3.3.3 Peroxo Complexes of Titanium
87(1)
3.4 Oxo Complexes
88(25)
3.4.1 Oxocomplexes [ Crv = O(Salen)]+
88(3)
3.4.2 Oxocomplexes [ Mnv = O(Salen)]+
91(4)
3.4.3 Oxocomplexes [ (L)Fev=O]3+ (L = Tetradentate N-Donor Ligand) as Proposed Active Species of Selective Epoxidation of Olefins
95(9)
3.4.4 EPR Spectroscopic Detection of the Elusive Fev=0 Intermediates in Selective Catalytic Epoxidation of Olefins Mediated by Ferric Complexes with Substituted Aminopyridine Ligands
104(9)
3.5 Structure of Co(III) Acetate in Solution
113(14)
References
116(11)
Chapter 4 NMR and EPR Spectroscopy in the Study of the Mechanisms of Metallocene and Post-Metallocene Polymerization and Oligomerization of α-Olefins
127(92)
4.1 Metallocene Catalysts
127(32)
4.1.1 Introduction
127(1)
4.1.2 Size of MAO Oligomers
128(2)
4.1.3 On the Active Centers of MAO
130(2)
4.1.4 Structure of Ion Pairs Formed upon the Interaction of Cp2ZrMe2 with MAO
132(2)
4.1.5 Detection of Ion Pairs Formed upon Activation of (Cp-R)2ZrCl2 (R = nBu, tBu) with MAO
134(3)
4.1.6 Detection of Ion Pairs Formed in the Catalyst Systems (Cp-R)2ZrCl2/MAO (R = Me, 1,2-Me2, 1,2,3-Me3, 1,2,4-Me3, Me4)
137(2)
4.1.7 Ion Pairs Formed upon Activation of Ansa-Zirconocenes with MAO
139(4)
4.1.8 Ion Pairs Formed upon Interaction of Cp2TiCl2 and Rac-C2H4(Ind)2TiCl2 with MAO
143(5)
4.1.9 Ion Pairs Formed upon Activation of (C5Me5) TiCl3 and [ (Me4C5)SiMe2NtBu]TiCl2 with MAO
148(1)
4.1.10 Observation of Ion Pairs Formed in the Catalyst Systems Zirconocene/MMAO
149(3)
4.1.11 Ion Pairs Formed in the Catalyst Systems Metallocene/AliBu3/[ Ph3C][ B(C6F5)4]
152(4)
4.1.12 Ion Pairs Operating in the Catalyst Systems Zirconocene/Activator/α-Olefin
156(3)
4.2 Post-Metallocene Catalysts
159(39)
4.2.1 Bis(imino)pyridine Iron Ethylene Polymerization Catalysts
159(1)
4.2.1.1 Activation of L2iPrFeCl2 with MAO
160(1)
4.2.1.2 Activation of L2iPrFeCl2 with AlMe3
161(5)
4.2.2 Bis(imino)pyridine Cobalt Ethylene Polymerization Catalysts
166(1)
4.2.2.1 Activation of L2iPrCoIICl2 with MAO
166(3)
4.2.2.2 Activation of L2iPrCoIICl2 with AlMe3
169(2)
4.2.3 α-Diimine Vanadium(III) Ethylene Polymerization Catalysts
171(1)
4.2.3.1 System L2MeVCl3/AlMe3/[ Ph3C] [ B(C6F5)4]
172(3)
4.2.3.2 System L2MeVCl3/MAO
175(1)
4.2.4 Ethylene Polymerization Precatalyst Based on Calix[ 4]arene Vanadium(V) Complex
176(1)
4.2.4.1 Reaction of Calix[ 4]arene Vanadium(V) Complex with AlEt2Cl
176(2)
4.2.4.2 Reaction of Calix[ 4]arene Vanadium(V) Complex with AlMe2Cl
178(3)
4.2.4.3 Reaction of Calix[ 4]arene Vanadium(V) Complex with AlEt3
181(1)
4.2.5 Neutral NiIIK2-(N, O)-salicylaldiminato Olefin Polymerization Catalysts
182(1)
4.2.5.1 Chain-Propagating Species Formed upon Ethylene Polymerization with Neutral Salicylaldiminato Nickel(II) Catalysts
182(5)
4.2.5.2 Evaluation of the Size of Ni-Polymeryl Species by PFG NMR Spectroscopy
187(1)
4.2.5.3 Catalyst Deactivation
188(2)
4.2.6 Formation of Cationic Intermediates upon the Activation of Bis(imino)pyridine Nickel Catalysts
190(4)
4.2.7 Cationic Intermediates Formed upon the Activation of Ni(II) Catalysts with AlMe2Cl and AlEt2Cl
194(4)
4.3 On the Origin of Living Polymerization over o-Fluorinated Post-Titanocene Catalysts
198(4)
4.4 Selective Ethylene Trimerization by Titanium Complex Bearing Phenoxy Imine Ligand
202(17)
References
206(13)
Index 219
Evgenii Talsi leads the Laboratory of the Mechanistic Studies of Catalytic Reactions, Boreskov Institute of Catalysis.

Konstantin Bryliakov is a leading research scientist at the Boreskov Institute of Catalysis.