Muutke küpsiste eelistusi

E-raamat: Applications of Evolutionary Computation: 27th European Conference, EvoApplications 2024, Held as Part of EvoStar 2024, Aberystwyth, UK, April 3-5, 2024, Proceedings, Part II

Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 80,26 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The two-volume set LNCS 14634 and 14635 constitutes the refereed proceedings of the 27th European Conference on Applications of Evolutionary Computation, EvoApplications 2024, held as part of EvoStar 2024, in Aberystwyth, UK, April 3–5, 2024, and co-located with the EvoStar events, EvoCOP, EvoMUSART, and EuroGP.

The 51 full papers presented in these proceedings were carefully reviewed and selected from 77 submissions. The papers have been organized in the following topical sections: applications of evolutionary computation; analysis of evolutionary computation methods: theory, empirics, and real-world applications; computational intelligence for sustainability; evolutionary computation in edge, fog, and cloud computing; evolutionary computation in image analysis, signal processing and pattern recognition; evolutionary machine learning; machine learning and AI in digital healthcare and personalized medicine; problem landscape analysis for efficient optimization; softcomputing applied to games; and surrogate-assisted evolutionary optimisation.


Evolutionary Machine Learning: Hindsight Experience Replay with
Evolutionary Decision Trees for Curriculum Goal Generation.- Cultivating
Diversity: A Comparison of Diversity Objectives in Neuroevolution.- Evolving
Reservoirs for Meta Reinforcement Learning.- Hybrid Surrogate Assisted
Evolutionary Multiobjective Reinforcement Learning for Continuous Robot
Control.- Towards Physical Plausibility in Neuroevolution
Systems.- Leveraging More of Biology in Evolutionary Reinforcement Learning.-
A Hierarchical Dissimilarity Metric for Automated Machine Learning Pipelines,
and Visualizing Search Behaviour.- DeepEMO: A Multi-Indicator Convolutional
Neural Network-based Evolutionary Multi-Objective Algorithm.- A Comparative
Analysis of Evolutionary Adversarial One-Pixel Attacks.- Robust Neural
Architecture Search using Differential Evolution for Medical
Images.- Progressive Self-Supervised Multi-Objective NAS for Image
Classification.- Genetic Programming with Aggregate Channel Features for
Flower Localization Using Limited Training Data.- Evolutionary
Multi-Objective Optimization of Large Language Model Prompts for Balancing
Sentiments.- Evolutionary Feature-Binning with Adaptive Burden Thresholding
for Biomedical Risk Stratification.- An Evolutionary Deep Learning Approach
for Efficient Quantum Algorithms Transpilation.- Measuring Similarities in
Model Structure of Metaheuristic Rule Set Learners.- Machine Learning and AI
in Digital Healthcare and Personalized Medicine: Incremental growth on
Compositional Pattern Producing Networks based optimization of biohybrid
actuators.- Problem Landscape Analysis for Efficient Optimization: Hilbert
Curves for Efficient Exploratory Landscape Analysis Neighbourhood Sampling.-
Predicting Algorithm Performance in Constrained Multiobjective Optimization:
A Tough Nut to Crack.- On the Latent Structure of the bbob-biobj Test
Suite.- Soft Computing applied to Games.- Strategies for Evolving Diverse and
Effective Behaviours in Pursuit Domains.- Using Evolution and Deep Learning
to Generate Diverse Intelligent Agents.- Vision Transformers for Computer
Go.- Surrogate-Assisted Evolutionary Optimisation: Integrating Bayesian and
Evolutionary Approaches for Multi-ObjectiveOptimisation.