Muutke küpsiste eelistusi

E-raamat: Applications Of Tensor Analysis In Continuum Mechanics

(Gdansk Univ Of Technology, Poland), (National Univ Of Colombia, Colombia), (Lawrence Technological Univ, Usa)
  • Formaat: 428 pages
  • Ilmumisaeg: 10-Jul-2018
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789813238985
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 113,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 428 pages
  • Ilmumisaeg: 10-Jul-2018
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789813238985
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

'A strong point of this book is its coverage of tensor theory, which is herein deemed both more readable and more substantial than many other historic continuum mechanics books. The book is self-contained. It serves admirably as a reference resource on fundamental principles and equations of tensor mathematics applied to continuum mechanics. Exercises and problem sets are useful for teaching The book is highly recommended as both a graduate textbook and a reference work for students and more senior researchers involved in theoretical and mathematical modelling of continuum mechanics of materials. Key concepts are well described in the text and are supplemented by informative exercises and problem sets with solutions, and comprehensive Appendices provide important equations for ease of reference.'Contemporary PhysicsA tensor field is a tensor-valued function of position in space. The use of tensor fields allows us to present physical laws in a clear, compact form. A byproduct is a set of simple and clear rules for the representation of vector differential operators such as gradient, divergence, and Laplacian in curvilinear coordinate systems. The tensorial nature of a quantity permits us to formulate transformation rules for its components under a change of basis. These rules are relatively simple and easily grasped by any engineering student familiar with matrix operators in linear algebra. More complex problems arise when one considers the tensor fields that describe continuum bodies. In this case general curvilinear coordinates become necessary. The principal basis of a curvilinear system is constructed as a set of vectors tangent to the coordinate lines. Another basis, called the dual basis, is also constructed in a special manner. The existence of these two bases is responsible for the mysterious covariant and contravariant terminology encountered in tensor discussions.This book provides a clear, concise, and self-contained treatment of tensors and tensor fields. It covers the foundations of linear elasticity, shell theory, and generalized continuum media, offers hints, answers, and full solutions for many of the problems and exercises, and Includes a handbook-style summary of important tensor formulas.The book can be useful for beginners who are interested in the basics of tensor calculus. It also can be used by experienced readers who seek a comprehensive review on applications of the tensor calculus in mechanics.
Preface v
1 Vectors and Transformations
1(12)
1.1 Change of Basis and the Reciprocal Basis
1(7)
1.2 The Cross Product in Index Notation
8(3)
1.3 Problems
11(2)
2 Tensors and Tensor Fields
13(98)
2.1 Dyadic Quantities
13(3)
2.2 Second-Order Tensors
16(31)
2.3 Third- and Higher-Order Tensors
47(3)
2.4 Isotropic Tensors
50(1)
2.5 Tensor-Valued Functions of Tensor Arguments
51(4)
2.6 Norms for Vectors and Tensors
55(3)
2.7 Analysis of a Vector Function of a Single Real Variable
58(1)
2.8 Differentiation of Tensorial Functions
59(7)
2.9 Tensor Fields
66(20)
2.10 Pseudovectors, Pseudoscalars, and Pseudotensors
86(5)
2.11 More on Invariants of Tensors and Vectors
91(12)
2.12 Problems
103(8)
3 Elements of Differential Geometry
111(32)
3.1 Basic Theory of Curves
111(9)
3.2 Basic Theory of Surfaces
120(19)
3.3 Problems
139(4)
4 Linear Elasticity
143(52)
4.1 Stress Tensor
143(9)
4.2 Strain Tensor
152(3)
4.3 Equation of Motion
155(1)
4.4 Hooke's Law
156(5)
4.5 Equilibrium Equations in Displacements
161(1)
4.6 Boundary Conditions and Boundary Value Problems
162(2)
4.7 Equilibrium Equations in Stresses
164(1)
4.8 Uniqueness of Solution for the Boundary Value Problems of Elasticity
165(2)
4.9 Betti's Reciprocity Theorem
167(2)
4.10 Minimum Total Energy Principle
169(7)
4.11 Ritz's Method
176(5)
4.12 Rayleigh's Variational Principle
181(6)
4.13 Plane Waves
187(2)
4.14 Plane Problems of Elasticity
189(2)
4.15 Problems
191(4)
5 Linear Elastic Shells
195(48)
5.1 Some Equations From Surface Theory
197(2)
5.2 Kinematics in a Neighborhood of Σ
199(2)
5.3 Equations of Equilibrium for the Shell
201(4)
5.4 Shell Deformation and Strains; Kirchhoff's Hypotheses
205(7)
5.5 Shell Energy
212(2)
5.6 Boundary Conditions
214(3)
5.7 A Few Remarks on the Kirchhoff-Love Theory
217(2)
5.8 Plate Theory
219(14)
5.9 On Non-Classical Theories of Plates and Shells
233(10)
6 Mechanics of Generalized Media
243(76)
6.1 Some Basic Principles for Modeling Complex Media
245(4)
6.2 Introducing a Generalized Medium Model
249(3)
6.3 Nonlinear Elasticity
252(22)
6.4 Cosserat Continuum
274(6)
6.5 Micromorphic Continuum
280(8)
6.6 Strain-Gradient Elasticity
288(6)
6.7 Linear Stress- and Strain-Gradient Elasticity
294(5)
6.8 Strain Gradient Fluids
299(9)
6.9 Liquid Crystals
308(6)
6.10 Other Generalized Models
314(5)
Appendix A Equation Summary for Tensor Analysis 319(24)
Appendix B Some Formulas for Particular Coordinate Systems 343(6)
Appendix C Main Equations of Linear Elasticity 349(6)
Appendix D Hints and Answers 355(50)
Bibliography 405(4)
Index 409