Muutke küpsiste eelistusi

E-raamat: Applied Asymptotics: Case Studies in Small-Sample Statistics

(University of Toronto), (École Polytechnique Fédérale de Lausanne),
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 90,14 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

First practical treatment of small-sample asymptotics, enabling practitioners to apply new methods with confidence.

In fields such as biology, medical sciences, sociology, and economics researchers often face the situation where the number of available observations, or the amount of available information, is sufficiently small that approximations based on the normal distribution may be unreliable. Theoretical work over the last quarter-century has led to new likelihood-based methods that lead to very accurate approximations in finite samples, but this work has had limited impact on statistical practice. This book illustrates by means of realistic examples and case studies how to use the new theory, and investigates how and when it makes a difference to the resulting inference. The treatment is oriented towards practice and comes with code in the R language (available from the web) which enables the methods to be applied in a range of situations of interest to practitioners. The analysis includes some comparisons of higher order likelihood inference with bootstrap or Bayesian methods. Author resource page: http://www.isib.cnr.it/~brazzale/AA/

Arvustused

'I welcome this book and wish it well in achieving some inroads into practical use of a large area of theoretical developments.' Journal of Applied Statistics 'This is a very welcome book, on a very important topic.' Andrew Robinson, University of Melbourne 'This is an excellent book for applied statisticians. It presents application of higher order asymptotic theory in likelihood in many different contexts. I highly recommend the book to researchers looking for ways to improve accuracy in statistical testing. The book is well written, the examples are clear and because all examples can be verified by the reader through the provided packages and code in R, the analyses can be explored in great detail.' Biometrics

Muu info

First practical treatment of small-sample asymptotics, enabling practitioners to apply new methods with confidence.
Preface vii
Introduction
1(4)
Uncertainty and approximation
5(12)
Introduction
5(1)
Scalar parameter
5(5)
Several parameters
10(4)
Further remarks
14(3)
Simple illustrations
17(20)
Introduction
17(1)
Cauchy distribution
17(3)
Top quark
20(3)
Astronomer data
23(5)
Cost data
28(9)
Discrete data
37(21)
Introduction
37(2)
Urine data
39(7)
Cell phone data
46(3)
Multiple myeloma data
49(3)
Speed limit data
52(3)
Smoking data
55(3)
Regression with continuous responses
58(28)
Introduction
58(3)
Nuclear power station data
61(5)
Daphnia magna data
66(6)
Radioimmunoassay data
72(6)
Leukaemia data
78(3)
PET film data
81(5)
Some case studies
86(22)
Introduction
86(1)
Wasp data
86(5)
Grazing data
91(5)
Herbicide data
96(12)
Further topics
108(26)
Introduction
108(1)
Calibration
108(3)
Variance components
111(6)
Dependent data
117(4)
Vector parameter of interest
121(2)
Laplace approximation
123(4)
Partial likelihood
127(2)
Constructed exponential families
129(5)
Likelihood approximations
134(36)
Introduction
134(1)
Likelihood and model classes
134(4)
First order theory
138(2)
Higher order density approximations
140(7)
Tail area approximations
147(8)
Tail area expressions for special cases
155(6)
Approximations for Bayesian inference
161(3)
Vector parameters of interest
164(6)
Numerical implementation
170(15)
Introduction
170(1)
Building-blocks
171(3)
Pivot profiling
174(3)
Family objects and symbolic differentiation
177(5)
Other software
182(3)
Problems and further results
185(26)
A. Some numerical techniques
211(8)
Convergence of sequences
211(1)
The sample mean
211(5)
Laplace approximation
216(1)
X2 approximations
217(2)
References 219(10)
Example index 229(1)
Name index 230(3)
Index 233


Alessandra Brazzale is a Researcher in Statistics at the Institute of Biomedical Engineering, Italian National Research Council, Padova. Anthony Davison is a Professor of Statistics at the Ecole Polytechnique Fédérale de Lausanne. Nancy Reid is a University Professor of Statistics at the University of Toronto.