Muutke küpsiste eelistusi

E-raamat: Applied Control of Electrical Drives: Real Time Embedded and Sensorless Control using VisSim(TM) and PLECS(TM)

  • Formaat: PDF+DRM
  • Sari: Power Systems
  • Ilmumisaeg: 17-Sep-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319200439
  • Formaat - PDF+DRM
  • Hind: 135,23 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Power Systems
  • Ilmumisaeg: 17-Sep-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319200439

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

·         Provides an overall understanding of all aspects of AC electrical drives, from the motor and converter to the implemented control algorithm, with minimum mathematics needed

·         Demonstrates how to implement and debug electrical drive systems using a set of dedicated hardware platforms, motor setup and software tools in VisSim and PLECS

·         No expert programming skills required, allowing the reader to concentrate on drive development

·         Enables the reader to undertake real-time control of a safe (low voltage) and low cost experimental drive

 

This book puts the fundamental and advanced concepts behind electric drives into practice. Avoiding involved mathematics whenever practical, this book shows the reader how to implement a range of modern day electrical drive concepts, without requiring in depth programming skills. It allows the user to build and run a series of AC drive concepts, ranging from very basic drives to sophisticated sensorless drives. Hence the book is the only modern resource available that bridges the gap between simulation and the actual experimental environment. Engineers who need to implement an electrical drive, or transition from sensored to sensorless drives, as well as students who need to understand the practical aspects of working with electrical drives, will greatly benefit from this unique reference.  
1 Introduction
1(14)
1.1 Importance of Electrical Drives and Electrical Machines
1(1)
1.2 Key Components of the Electrical Drive System
2(2)
1.3 Notational Conventions
4(1)
1.3.1 Voltage and Current Conventions
4(1)
1.3.2 Mechanical Conventions
4(1)
1.4 Use of Building Blocks to Represent Equations
5(10)
1.4.1 Fixed Point Versus Floating Point Representation
7(1)
1.4.2 Use of Scaling for Fixed Point Formatted Numbers
8(1)
1.4.3 Continuous and Discrete Time Operational Issues
9(2)
1.4.4 Basic Control Block Library
11(4)
2 Drive Principles and Development
15(26)
2.1 Control of Electrical Drives
15(22)
2.1.1 Helicopter Example
16(1)
2.1.2 Use of a Speed Control Loop
17(3)
2.1.3 Torque Production Mechanism in Machines
20(4)
2.1.4 Machine Modeling
24(3)
2.1.5 Current Control for Electrical Drives
27(5)
2.1.6 Space Vector Modulation and Timing Issues
32(5)
2.2 Drive Development for Real-Time Control
37(4)
3 Module 1: Lab Sessions
41(94)
3.1 Laboratory 1:1: Open-Loop Voltage Control
41(17)
3.1.1 Lab 1:1: Phase A
42(5)
3.1.2 Lab 1:1: Phase B
47(2)
3.1.3 Lab 1:1: Phase C
49(5)
3.1.4 Lab 1:1: Phase C+
54(4)
3.2 Laboratory 1:2: Open-Loop Current Control
58(13)
3.2.1 Lab 1:2: Phase A
59(1)
3.2.2 Lab 1:2: Phase B
60(4)
3.2.3 Lab 1:2: Phase C
64(4)
3.2.4 Lab 1:2: Phase C+
68(3)
3.3 Laboratory 1:3: FOC Sensored Control of PM
71(11)
3.3.1 Lab 1:3: Phase B
71(4)
3.3.2 Lab 1:3: Phase C
75(5)
3.3.3 Lab 1:3: Phase C+
80(2)
3.4 Laboratory 1:4: Use of SpinTAC Motion Control Suite
82(14)
3.4.1 Lab 1:4: Phase B
84(4)
3.4.2 Lab 1:4: Phase C
88(4)
3.4.3 Lab 1:4: Phase C+
92(4)
3.5 Laboratory 1:5: Voltage/Frequency and Speed Control of IM
96(12)
3.5.1 Lab 1:5: Phase B
98(3)
3.5.2 Lab 1:5: Phase C
101(4)
3.5.3 Lab 1:5: Phase C+
105(3)
3.6 Laboratory 1:6: FOC Sensored Control of IM
108(13)
3.6.1 Lab 1:6: Phase B
110(5)
3.6.2 Lab 1:6: Phase C
115(4)
3.6.3 Lab 1:6: Phase C+
119(2)
3.7 Laboratory 1:7: Dual Control of a IM and PM Machine
121(14)
3.7.1 Lab 1:7: Phase B
122(6)
3.7.2 Lab 1:7: Phase C
128(3)
3.7.3 Lab 1:7: Phase C+
131(4)
4 Module 2: Lab Sessions
135(78)
4.1 Importance of Sensorless Control and Introduction to InstaSPIN-FOC
135(4)
4.2 Laboratory 2:1: FOC Sensorless Control of a PM Machine
139(17)
4.2.1 Lab 2:1: Phase B
139(6)
4.2.2 Lab 2:1: Phase C
145(7)
4.2.3 Lab 2:1: Phase C+
152(4)
4.3 Laboratory 2:2: PM FOC Sensorless Control with Motor Identification
156(25)
4.3.1 Lab 2:2: Phase B
157(7)
4.3.2 Lab 2:2: Phase C
164(6)
4.3.3 Lab 2:2: Phase C+
170(11)
4.4 Laboratory 2:3: PM FOC Sensorless Control with Field Weakening
181(11)
4.4.1 Lab 2:3: Phase C
184(3)
4.4.2 Lab 2:3: Phase C+
187(5)
4.5 Laboratory 2:4: Commissioning a PM Drive for Sensorless Operation
192(12)
4.5.1 Lab 2:4: Voltage Controller, Phase C
194(7)
4.5.2 Lab 2:4: Phase C+
201(3)
4.6 Laboratory 2:5: Dual Control of Two PM Machines
204(9)
4.6.1 Lab 2:5: Phase C
205(5)
4.6.2 Lab 2:5: Phase C+
210(3)
5 Module 3: Lab Sessions
213(76)
5.1 Introduction to Sensorless Control for Induction Machines
213(3)
5.2 Laboratory 3:1: FOC Sensorless Control of a IM Machine
216(16)
5.2.1 Lab 3:1: Phase B
216(5)
5.2.2 Lab 3:1: Phase C
221(7)
5.2.3 Lab 3:1: Phase C+
228(4)
5.3 Laboratory 3:2: IM FOC Sensorless Control with Motor Identification
232(25)
5.3.1 Lab 3:2: Phase B
232(8)
5.3.2 Lab 3:2: Phase C
240(6)
5.3.3 Lab 3:2: Phase C+
246(11)
5.4 Laboratory 3:3: Efficient FOC Drive Operation of Induction Machines
257(9)
5.4.1 Lab 3:3: Phase C
259(2)
5.4.2 Lab 3:3: Phase C+
261(5)
5.5 Laboratory 3:4: Commissioning a IM Drive for Sensorless Operation
266(12)
5.5.1 Lab 3:4: Voltage Controller, Phase C
267(7)
5.5.2 Lab 3:4: Phase C+
274(4)
5.6 Laboratory 3:5: Dual Control of IM and PM Machine
278(11)
5.6.1 Lab 3:5: Phase C
279(5)
5.6.2 Lab 3:5: Phase C+
284(5)
6 VisSim Based Case Studies
289(82)
6.1 Case Study V1: Helicopter Drive
289(24)
6.1.1 Case Study V1a: Helicopter Drive: Commissioning, Phase C
291(7)
6.1.2 Case Study V1a: Helicopter Drive: Commissioning, Phase C+
298(2)
6.1.3 Case Study V1b: Helicopter Drive: Sensorless Operation, Phase C
300(5)
6.1.4 Case Study V1b: Helicopter Drive: Sensorless Operation, Phase C+
305(8)
6.2 Case Study V2: CoMoCo Drive
313(35)
6.2.1 Case Study V2a: CoMoCo Drive: Commissioning, Phase C
315(6)
6.2.2 Case Study V2a: CoMoCo: Commissioning, Phase C+
321(3)
6.2.3 Case Study V2b: CoMoCo Drive: Sensorless Operation, Phase C
324(6)
6.2.4 Case Study V2b: CoMoCo Drive: Sensorless Operation, Phase C+
330(8)
6.2.5 Case Study V2c: CoMoCo Drive: PFC+boost, Introduction
338(3)
6.2.6 Case Study V2c: CoMoCo Drive: PFC+boost, Phase C
341(5)
6.2.7 Case Study V2c: CoMoCo Drive: PFC+boost, Phase C+
346(2)
6.3 Case Study V3: e-Traction Drive
348(23)
6.3.1 Case Study 3a: e-Traction Drive: Commissioning, Phase C
350(7)
6.3.2 Case Study V3a: e-Traction Drive: Commissioning, Phase C+
357(2)
6.3.3 Case Study V3b: e-Traction Drive: Sensorless Operation, Phase C
359(6)
6.3.4 Case Study 3b: e-Traction Drive: Sensorless Operation, Phase C+
365(6)
7 PLECS Based PIL Case Studies
371
7.1 Case Study P1: e-Traction Converter with Marathon IM Motor
373(11)
7.1.1 Case Study P1a: e-Traction Converter with Marathon IM Motor: PIL Drive Commissioning
376(5)
7.1.2 Case Study P1b: e-Traction Converter with Marathon IM Motor: PIL Drive Operation
381(3)
7.2 Case Study P2: Motor Identification Using InstaSPIN and PIL Technology
384(11)
7.2.1 Case Study P2a: Motor Identification Using InstaSPIN and PIL Technology: PIL Drive Commissioning
387(2)
7.2.2 Case Study P2b: Motor Identification Using InstaSPIN and PIL Technology: PIL Drive Operation
389(3)
7.2.3 Case Study P2c: Motor Identification Using InstaSPIN and PIL Technology: `Normal Drive' Operation
392(3)
7.3 Case Study P3: e-Traction Converter with Single-Phase IM Motor
395
7.3.1 Case Study P3a: e-Traction Converter with Single Phase IM Motor: PIL Drive Commissioning
400(2)
7.3.2 Case Study P1b: e-Traction Converter with Single Phase Induction Motor: PIL Drive Operation
402
Erratum 1(404)
References 405(2)
Abbreviations 407(2)
List of symbols 409(2)
List of indices 411(2)
Index 413
Dr. Duco Pulle is Founder and Director of EM synergy, Inc. and Guest Professor at The Institute for Power Electronics and Electrical Drives (ISEA) at RWTH Aachen University. He is the author of previous Springer titles in the Power Systems Series, Fundamentals of Electrical Drives and Advanced Electrical Drives.

Dr. ir. André Veltman is director of Piak Electronic Design B.V. in the Netherlands and (co-)author of two other Springer titles on Electrical Drives.

Dr. Pete Darnell is President of the American software engineering firm Visual Solutions Inc.