Muutke küpsiste eelistusi

E-raamat: Applied Delay Differential Equations

  • Formaat - PDF+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Applied Delay Differential Equations is a friendly introduction to the fast-growing field of time-delay differential equations. Written to a multi-disciplinary audience, it sets each area of science in his historical context and then guides the reader towards questions of current interest.

Arvustused

From the reviews:

"This book is devoted to the theory and applications of time-delay differential equations, which is currently among the fastest-growing and most important areas of research. This book is written in a language suitable for undergraduate and graduate students who have calculus and differential equations courses in their background. It is an excellent guide book for mathematicians as well as for multi-disciplinary scientists who apply mathematics to describe real-life phenomena in their research. used as a reference book on delay differential equations." (Natali Hritonenko, Mathematical Reviews, Issue 2009 m)

Thomas Erneux has written an outstanding book that brings a refreshing approach to the subject, an approach utilizing asymptotic and bifurcation techniques that are accessible to a wide scientific audience. book could be used in a course on DDEs at the advance undergraduate or graduate level . I highly recommend the book to students and researchers . Applied Delay Differential Equations is highly accessible and the mathematical techniques presented are sufficient to extract valuable insights into DDEs and their applications. (Steven M. Baer, SIAM Reviews, Vol. 53 (2), 2011)

1 Introduction 1
1.1 Properties
2
1.1.1 Oscillations
2
1.1.2 Short time solution
3
1.2 Cyclic behaviors
5
1.3 Car-following models
7
1.4 Population dynamics
9
1.5 Nonlinear optics
13
1.6 Fluid dynamics
15
1.7 Economics
17
1.8 Mechanical engineering
20
1.9 Combustion engines
22
1.10 Classes of DDEs
23
1.10.1 Delay recruitment equation
24
1.10.2 Harmonic oscillator with delay
24
1.11 Analytical tools
27
2 Stability 29
2.1 The characteristic equation
30
2.1.1 Roots
31
2.1.2 Hopf bifurcation point
32
2.2 Position control and sampling
33
2.3 Reduction of payload oscillations
36
2.4 Traffic stability
39
2.4.1 Car-following models
39
2.4.2 Local and asymptotic stability
42
2.5 Bistability
43
2.6 Metastability
46
3 Biology 49
3.1 Population periodic cycles
50
3.2 The Hopf bifurcation
52
3.3 Time-delayed negative feedback
56
3.3.1 Circulating red blood cells
56
3.3.2 Pupil light reflex
59
3.3.3 Periodic breathing
62
3.3.4 Genetic oscillations
63
3.4 Human postural control
68
3.5 The inverted pendulum
71
4 Bernoulli's equation 75
4.1 The clarinet
76
4.2 Sleep disorders
81
4.3 Cascaded control of a liquid level system
85
5 Chemistry 91
5.1 Illuminated thermochemical reaction
93
5.1.1 Reformulation
93
5.1.2 Feedback
95
5.2 The bistable iodate—arsenous acid reaction
97
5.3 Weak delayed feedback
100
5.3.1 Experiments
100
5.3.2 A piecewise linear oscillator
103
6 Mechanical vibrations 109
6.1 Control engineering
109
6.2 The method of multiple scales
111
6.3 Minorsky's equation
113
6.3.1 Hopf bifurcation
113
6.3.2 Hopf bifurcation for large delay
114
6.3.3 Torus bifurcation
116
6.3.4 Map
117
6.3.5 Large delay asymptotics: Ginzburgh—Landau equation
118
6.4 Johnson and Moon's equation
122
6.4.1 Unusual Hopf bifurcation
123
6.5 Machine tool vibrations
125
6.5.1 Formulation and stability
126
6.6 Experiments
130
6.6.1 Linear theory
131
6.6.2 Nonlinear theory
132
7 Lasers 135
7.1 Optoelectronic feedback
136
7.2 Delayed incoherent feedback
138
7.2.1 Small feedback rate
138
7.2.2 Moderate feedback rate
142
7.2.3 Bifurcation near a double Hopf point
146
7.3 Delayed coherent feedback
152
7.3.1 Single-mode solutions
155
7.3.2 Two mode solutions and mode beating
156
7.3.3 Numerical simulations and bridges
157
7.4 Imaging using OFB
160
7.4.1 Stability analysis
161
7.4.2 Low feedback rate approximation
162
7.5 Optoelectronic oscillators
165
8 Phase equations 169
8.1 Weakly coupled oscillators
171
8.1.1 Basic solutions
171
8.1.2 Experiments
175
8.2 Strongly coupled oscillators
176
References 181
Index 201