Muutke küpsiste eelistusi

E-raamat: Applied Genetic Algorithm and Its Variants: Case Studies and New Developments

Edited by
  • Formaat - EPUB+DRM
  • Hind: 197,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides fundamental concepts related to various types of genetic algorithms and practical applications in various domains such as medical imaging, manufacturing, and engineering design. The book discusses genetic algorithms which are used to solve a variety of optimization problems. The genetic algorithms are demonstrated to offer reliable search in complex spaces. The book presents high-quality research work by academics and researchers which is useful for young researchers and students.
Variants of Genetics Algorithm and their Applications
Genetic Algorithms Applications for Challenging Real-World Problems: Some Recent Advances and Future Trends
Genetic Algorithm for Route Optimization
Design weight minimization of a reinforced concrete beam through genetic algorithm and its variants
IGA: an improved genetic algorithm for real-optimization problem
Application of Genetic Algorithm based controllers in Wind Energy Systems for Smart Energy Management
Application of Genetic Algorithm in Predicting Mental Illness: A Case Study of Schizophrenia
Comparison of Biological Inspired Algorithm with Socio Inspired Technique on Load Frequency Control of Multisource Single Area Power system
Genetic Algorithm and Accelerating Fuzzification for Optimum Sizing and Topology Design of Real-Size Tall Building Systems
Evaluation of Underwater Images using Genetic Algorithm Monitored Preprocessing and Morphological Segmentation.

Nilanjan Dey  is Associate Professor, Department of Computer Science and Engineering, Techno International New Town, Kolkata, India. He is Visiting Fellow of the University of Reading, UK. He was Honorary Visiting Scientist at Global Biomedical Technologies Inc., CA, USA (2012-2015). He was awarded his Ph.D. from Jadavpur University in 2015. He has authored/edited more than 70 books with Elsevier, CRC Press, and Springer and published more than 300 papers. He is Editor-in-Chief of International Journal of Ambient Computing and Intelligence, IGI Global, and Associated Editor of  International Journal of Information Technology, Springer. He is Series Co-editor of Springer Tracts in Nature-Inspired Computing, Springer, Series Co-editor of Advances in Ubiquitous Sensing Applications for Healthcare, Elsevier, and Series Editor of Computational Intelligence in Engineering Problem Solving and Intelligent Signal processing and data analysis, CRC. He is Fellow of IETE and Senior Member of IEEE.