Muutke küpsiste eelistusi

E-raamat: Applied Impulsive Mathematical Models

  • Formaat: PDF+DRM
  • Sari: CMS Books in Mathematics
  • Ilmumisaeg: 05-May-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319280615
  • Formaat - PDF+DRM
  • Hind: 86,44 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: CMS Books in Mathematics
  • Ilmumisaeg: 05-May-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319280615

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Using the theory of impulsive differential equations, this book focuses on mathematical models which reflect current research in biology, population dynamics, neural networks and economics. The authors provide the basic background from the fundamental theory and give a systematic exposition of recent results related to the qualitative analysis of impulsive mathematical models. Consisting of six chapters, the book presents many applicable techniques, making them available in a single source easily accessible to researchers interested in mathematical models and their applications. Serving as a valuable reference, this text is addressed to a wide audience of professionals, including mathematicians, applied researchers and practitioners.

Introduction.-Basic Theory.- Impulsive Biological Models.- Impulsive Models in Population Dynamics.- Impulsive Neural Networks.- Impulsive Models in Economics.- References.- Index.

Arvustused

The book contains a lot of useful information. Researchers in differential equations and applied analysis can benefit greatly from this text. (Svitlana P. Rogovchenko, Mathematical Reviews, April, 2017)



This book under review presents a description of some recent developments in the study of mathematical models in the form of impulsive differential equations, which are mainly impulsive ordinary differential equations. I think it is an interesting book, and I recommend it to the students and researchers interested in impulsive models. (Jin Liang, zbMATH 1355.34004, 2017)

1 Introduction
1(10)
2 Basic Theory
11(30)
2.1 Impulsive Differential Equations
11(8)
2.2 Almost Periodic Sequences and Almost Periodic Functions
19(7)
2.2.1 Almost Periodic Sequences
19(4)
2.2.2 Almost Periodic Functions
23(3)
2.3 Stability and Boundedness Definitions
26(4)
2.4 Piecewise Continuous Lyapunov Functions and Lyapunov Functionals
30(4)
2.5 Impulsive Differential Inequalities
34(5)
2.6 Coincidence Degree Lemmas
39(2)
3 Impulsive Biological Models
41(72)
3.1 An Impulsive Lasota--Wazewska Model
41(6)
3.2 An Impulsive Model of Hematopoiesis
47(5)
3.3 A More General n-Dimensional Impulsive Biological Model
52(9)
3.4 Linear and Quasilinear Impulsive Models
61(33)
3.5 Forced Perturbed Impulsive Models
94(8)
3.6 Perturbations in the Linear Part
102(7)
3.7 An Impulsive Delay Logarithmic Population Model
109(4)
4 Impulsive Models in Population Dynamics
113(94)
4.1 Single-Species Population Models
114(4)
4.2 An Impulsive Two-Species Model
118(5)
4.3 Impulsive Models in Banach Space
123(8)
4.4 Impulsive n-Species Lotka--Volterra Models
131(10)
4.5 Impulsive Lotka--Vollerra Models with Dispersions
141(6)
4.6 Impulsive n-Species Lotka--Volterra Models with Finite Delays
147(27)
4.6.1 The Periodic Case
149(11)
4.6.2 The Non-periodic Case
160(14)
4.7 Impulsive n-Species Lotka--Volterra Cooperation Models
174(4)
4.8 Impulsive n-Species Lotka--Volterra Models with Infinite Delays
178(17)
4.9 Impulsive Kolmogorov-Type Delayed Models
195(12)
5 Impulsive Neural Networks
207(64)
5.1 Impulsive Hopfield Neural Networks
208(8)
5.2 Impulsive Neural Network Models with Finite Delays
216(21)
5.3 Impulsive BAM Neural Network Models
237(17)
5.4 Impulsive Neural Network Models with Infinite Delays
254(2)
5.5 Impulsive Neural Network Models of General Type
256(15)
6 Impulsive Models in Economics
271(28)
6.1 Impulsive Solow-Type Models with Endogenous Delays
271(16)
6.1.1 Stability of the Impulsive Control Model
277(5)
6.1.2 Impulsive Stabilization of the Solutions
282(3)
6.1.3 Solow--Swan Models Accounting for Depreciation
285(2)
6.2 Impulsive Price Fluctuations Models
287(12)
References 299(16)
Index 315