Muutke küpsiste eelistusi

E-raamat: Applied Linear Regression for Business Analytics with R: A Practical Guide to Data Science with Case Studies

  • Formaat - EPUB+DRM
  • Hind: 122,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Applied Linear Regression for Business Analytics with R introduces regression analysis to business students using the R programming language with a focus on illustrating and solving real-time, topical problems. Specifically, this book presents modern and relevant case studies from the business world, along with clear and concise explanations of the theory, intuition, hands-on examples, and the coding required to employ regression modeling. Each chapter includes the mathematical formulation and details of regression analysis and provides in-depth practical analysis using the R programming language.

1. Introduction.-
2. Basic Statistics and Functions using R.-
3.
Regression Fundamentals.-
4. Simple Linear Regression.-
5. Multiple
Regression.-
6. Estimation Intervals and Analysis of Variance.-
7. Predictor
Variable Transformations.-
8. Model Diagnostics.-
9. Variable Selection.
Dr. Daniel McGibney is an Assistant Professor of Professional Practice at the University of Miami Herbert Business School, USA. He currently teaches analytics to both graduate and undergraduate students. Over the years, he has taught many analytics and data science classes, ranging from Basic Statistics to Big Data Analytics and Deep Learning. He has taught Applied Linear Regression Analysis to students pursuing their MSBA, MBA, MST, and MAcc. He also actively oversees and mentors graduate capstone projects in Analytics for MSBA students, collaborating with Deloitte, Visa, Carnival, Citi, Experian, and many other companies. Dr. McGibney formerly served as the program director for the Herbert Business Schools MSBA degree program. He advised students, oversaw admissions, expanded industry partnerships, and advanced the program curriculum during his tenure as program director.