Muutke küpsiste eelistusi

E-raamat: Applied Longitudinal Data Analysis for Medical Science: A Practical Guide

(Amsterdam University Medical Centers)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 27-Apr-2023
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781009288026
  • Formaat - PDF+DRM
  • Hind: 61,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 27-Apr-2023
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781009288026

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Discusses methods available for longitudinal data analysis in non-technical language, allowing readers to apply techniques easily to their work. Aimed at non-statisticians and researchers working in medical science and utilising longitudinal studies, the interpretation of the results of various methods of analysis is emphasised.

Essential for non-statisticians and researchers working with longitudinal data from medical studies, this updated new edition discusses the most important techniques available for analysing data of this type. Using non-technical language, the book explores simple methods such as the paired t-test and summary statistics as well as more sophisticated regression-based methods, including mixed model analysis. The emphasis of the discussion lies in the interpretation of the results of these different methods, covering data analysis with continuous, dichotomous, categorical and other outcome variables. Datasets used throughout the book are provided, enabling readers to re-analyse the examples as they make their way through chapters and improve their understanding of the material. Finally, an extensive and practical overview of, and comparison between, different software packages is provided. Readers will be able to use this book as a practical manual in their everyday work without needing a strong background in statistics.

Muu info

Discusses methods available for longitudinal data analysis in non-technical language, allowing readers to apply techniques to their work.
1. Introduction;
2. Continuous outcome variables;
3. Continuous outcome
variables regression based methods;
4. The modelling of time;
5. Models to
disentangle the between- and within-subjects relationship;
6. Causality in
observational longitudinal studies;
7. Dichotomous outcome variables;
8.
Categorical and count outcome variables;
9. Outcome variables with floor or
ceiling effects;
10. Analysis of longitudinal intervention studies;
11.
Missing data in longitudinal studies;
12. Sample size calculations;
13.
Software for longitudinal data analysis.
Jos W. R. Twisk is a Professor in the Department of Epidemiology and Data Science at Amsterdam Umc, Amsterdam, The Netherlands. He specialises in the methodological field of longitudinal data analysis and multilevel/mixed model analysis, and is head of the expertise center for Applied Longitudinal Data Analysis at the Amsterdam Umc.